Convention Concerning the Protection of the World Cultural and Natural Heritage

Under the terms of the Convention concerning the Protection of the World Cultural and Natural Heritage, adopted by the General Conference of UNESCO in 1972, the Intergovernmental Committee for the Protection of the World Cultural and Natural Heritage, called the World Heritage Committee, shall establish, under the title of "World Heritage List", a list of properties forming part of the cultural and natural heritage which it considers as having Outstanding Universal Value in terms of such criteria as it shall have established.

The purpose of this form is to enable States Parties to submit to the World Heritage Committee nominations of properties situated in their territory and suitable for inclusion in the World Heritage List.

This Nomination Document has been prepared in accordance with the Format for the nomination of cultural and natural properties for inscription in the World Heritage list issued by UNESCO.

The form has been completed in English and is sent in two copies to:-

The Secretariat
World Heritage Centre
UNESCO
7, Place de Fontenoy
75352 Paris 07 SP
France

The newly painted Forth Bridge, illuminated by a sunset, as seen from South Queensferry, November 2012. (© Crown Copyright, reproduced courtesy of Historic Scotland. www.historicscotlandimages.gov.uk, Duncan Peel, dpflb201112015)
The Forth Bridge

Nomination for Inclusion in the World Heritage List
Foreword

by The Rt Hon Maria Miller, MP, Secretary of State for Culture, Media and Sport

It is now thirty years since the United Kingdom ratified the World Heritage Convention, and in so doing, joined the international community in committing to identify and protect places across the world that have outstanding universal value. In that time, we have been proud to witness the inscription of 28 British and UK-dependency sites. We remain eager to forge new partnerships with other nations to safeguard and promote that shared heritage, and are pleased to continue our support for UNESCO’s core aim of broadening the World Heritage List.

I am acutely aware that this broadening should not merely increase the number of World Heritage Sites, but also requires to address gaps in the types and distribution of sites that are on the List. It is, for example, clear that sites representing world technological and industrial heritage have been comparatively poorly represented in the List. This situation is gradually being addressed, with the recent inscription of some mining landscapes, and several more industrial sites are now reaching the top of a number of country’s Tentative Lists, but there is still work to be done.

I am therefore especially pleased that the United Kingdom Government can now nominate the Forth Bridge for inclusion in the World Heritage List. Straddling two and a half km of the Forth estuary to the north of Edinburgh and comprising 54,000 tonnes of mild steel, there can be no comparable example of a single, monumental structure capturing so completely the rapid advances in technology, materials and engineering of the 19th Century. At its completion in 1890, it was already an engineering wonder of the world and a tourist attraction in its own right. Its construction was recorded in immense detail and documented in learned journals of the time, leaving a uniquely full and detailed record of its creation, and it has since been maintained to such a high standard that it continues to function as a busy mainline railway bridge.

This nomination has been prepared by a partnership of individuals and organisations working under the auspices of the Forth Bridges Forum, and I would like to thank them all for the time, hard work and resources they have invested in the nomination process over several years. In particular, however, I wish to acknowledge the leading role of Scottish Ministers, and of Historic Scotland, in making this nomination possible.

The Rt Hon Maria Miller, MP
Secretary of State for Culture, Media and Sport
While Scotland is a country known the world-over for its stunning landscapes, our image as an industrious and innovative nation does not always receive the acknowledgement that it deserves. Yet, the fact is that one hundred years ago, Scotland had become one of the most sophisticated and highly developed industrial centres in the world. There is no better symbol of this moment in history than the Forth Bridge which, from 1882 to 1890, had emerged from the Firth of Forth as a towering reminder of the innovative powers of our engineers. This was an era when new materials such as mild steel had become cheaply available, and new means of construction based on the shipyard technologies of the Clyde were being developed. With its flourishing steel industry, innovative engineers and skilled workforce, Scotland was the perfect place to showcase an engineering project on a scale that had rarely if ever before been witnessed anywhere in the world.

One hundred and twenty four years later, the Forth Bridge remains a busy operational structure that lies at the heart of our national mainline railway infrastructure. Furthermore, thanks to the care and maintenance of many generations of painters and engineers, it remains in astonishingly good condition, benefitting most recently from over ten years of restoration work by Network Rail and the development of a new paint system. Indeed, you could argue that it has never looked so good since its completion in 1890.

The Forth Bridge became an icon from the moment its giant double-cantilever towers began to take on the instantly recognisable shape that we know today. It attracted huge numbers of visitors during its construction, and it continues to do so on a daily basis. It rapidly became an international icon of engineering, and continues to appear on coins and banknotes, biscuit tins, telephone cards, and company logos and stationery. Indeed, such is the pervasiveness of its brand that many people believe that it is already a World Heritage Site.

It is with this thought in mind that I am especially delighted to add my support to the nomination of the Forth Bridge for inclusion in the World Heritage List. I can think of no candidate from the world of engineering that shares its unique power, grace and beauty to such great effect. The Forth Bridge represents a unique fusion of human innovation and endeavour on an immense scale, made all the more special by the fact that it remains totally intact in use for the purpose for which it was originally intended.
Above: The Forth Bridge viewed from the west through the Forth Road Bridge, yet emerging as dominant, October 2012.
(Copyright, reproduced courtesy of Historic Scotland. www.historicscotlandimages.gov.uk, Duncan Peet, dptd091012066)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>4</td>
</tr>
<tr>
<td>Preface</td>
<td>7</td>
</tr>
<tr>
<td>Contents</td>
<td>8</td>
</tr>
<tr>
<td>Executive Summary</td>
<td>10</td>
</tr>
<tr>
<td>Section 1 Identification of the Property</td>
<td>15</td>
</tr>
<tr>
<td>1.a State Party and Country</td>
<td>15</td>
</tr>
<tr>
<td>1.b Region</td>
<td>15</td>
</tr>
<tr>
<td>1.c Name of the Property</td>
<td>15</td>
</tr>
<tr>
<td>1.d Geographical Co-Ordinates to the Nearest Second</td>
<td>15</td>
</tr>
<tr>
<td>1.e Maps and Plans Showing Boundaries of the Property</td>
<td>16</td>
</tr>
<tr>
<td>1.f Area of the Property</td>
<td>16</td>
</tr>
<tr>
<td>Section 2 Description</td>
<td>19</td>
</tr>
<tr>
<td>2.a Description of the Property</td>
<td>19</td>
</tr>
<tr>
<td>2.b History and Development</td>
<td>23</td>
</tr>
<tr>
<td>Section 3 Justification for Inscription</td>
<td>39</td>
</tr>
<tr>
<td>3.1.a Brief Synthesis</td>
<td>39</td>
</tr>
<tr>
<td>3.1.b Criteria Under Which Inscription is Proposed and Justification</td>
<td>39</td>
</tr>
<tr>
<td>3.1.c Statement of Integrity</td>
<td>41</td>
</tr>
<tr>
<td>3.1.d Statement of Authenticity</td>
<td>48</td>
</tr>
<tr>
<td>3.1.e Protection and Management Requirements</td>
<td>52</td>
</tr>
<tr>
<td>3.2 Comparative Analysis</td>
<td>53</td>
</tr>
<tr>
<td>3.3 Proposed Statement of Outstanding Universal Value</td>
<td>70</td>
</tr>
<tr>
<td>Section 4 State of Conservation and Factors Affecting the Property</td>
<td>73</td>
</tr>
<tr>
<td>4.a Present State of Conservation</td>
<td>73</td>
</tr>
<tr>
<td>4.b Factors Affecting the Property</td>
<td>77</td>
</tr>
<tr>
<td>Section 5 Protection and Management of the Property</td>
<td>85</td>
</tr>
<tr>
<td>5.a Ownership</td>
<td>86</td>
</tr>
<tr>
<td>5.b Protective Designations</td>
<td>88</td>
</tr>
<tr>
<td>5.c Means of Implementing Protective Measures</td>
<td>89</td>
</tr>
<tr>
<td>5.d Existing Plans Related to Municipality and Region in Which the Proposed Property is Located</td>
<td>111</td>
</tr>
<tr>
<td>5.e Property Management Plan</td>
<td>115</td>
</tr>
<tr>
<td>5.f Sources and Levels of Finance</td>
<td>120</td>
</tr>
<tr>
<td>5.g Sources of Expertise and Training in Conservation and Management Techniques</td>
<td>121</td>
</tr>
<tr>
<td>5.h Visitor Facilities and Statistics</td>
<td>122</td>
</tr>
<tr>
<td>5.i Policies and Programmes Related to the Presentation and Promotion of the Property</td>
<td>124</td>
</tr>
<tr>
<td>5.j Staffing Levels (Professional, Technical and Maintenance)</td>
<td>125</td>
</tr>
<tr>
<td>Section 6 Monitoring</td>
<td>127</td>
</tr>
<tr>
<td>6.a Key Indicators for Measuring State of Conservation</td>
<td>127</td>
</tr>
<tr>
<td>6.b Administrative Arrangements for Monitoring the Property</td>
<td>130</td>
</tr>
<tr>
<td>6.c Results of Previous Reporting Exercises</td>
<td>130</td>
</tr>
<tr>
<td>Section 7 Documentation</td>
<td>132</td>
</tr>
<tr>
<td>7.a Photographs, Slides, Image Inventory and Authorisation Table and Other Audiovisual Materials</td>
<td>132</td>
</tr>
<tr>
<td>7.b Texts Relating to Protective Designation, Copies of Property Management Plans or Documented Management Systems and Extracts of Other Plans Relevant to the Property</td>
<td>134</td>
</tr>
<tr>
<td>7.c Form and Date of Most Recent Records or Inventory of the Property</td>
<td>135</td>
</tr>
<tr>
<td>7.d Address Where Inventory, Records and Archives are Held</td>
<td>136</td>
</tr>
<tr>
<td>7.e Bibliography</td>
<td>138</td>
</tr>
<tr>
<td>7.f Glossary</td>
<td>142</td>
</tr>
<tr>
<td>Section 8 Contact Information</td>
<td>145</td>
</tr>
<tr>
<td>8.a Preparer</td>
<td>145</td>
</tr>
<tr>
<td>8.b Official Local Institution/Agency</td>
<td>145</td>
</tr>
<tr>
<td>8.c Other Local Institutions</td>
<td>145</td>
</tr>
<tr>
<td>8.d Official Web Address</td>
<td>145</td>
</tr>
<tr>
<td>Section 9 Signature on Behalf of the State Party</td>
<td>147</td>
</tr>
<tr>
<td>Section 10 Acknowledgements</td>
<td>149</td>
</tr>
</tbody>
</table>
Executive Summary

State Party
United Kingdom

State, Province or Region
Scotland, lying within Fife and City of Edinburgh local authority boundaries

Name of Property
The Forth Bridge

Geographical Co-Ordinates to Nearest Second
The centre of the nominated property is at: Latitude: 56° 00' 04" N Longitude. 3° 23' 23" W or Latitude/Longitude: 55.9984, -3.3876

UK Ordnance Survey Grid Coordinates: NT 313554, 679252

Textual Description of the Boundaries of the Nominated Property
The Forth Bridge is a 2.53m-long railway bridge spanning the estuary of the River Forth, connecting Fife on the north side with the City of Edinburgh to the south. The nominated property boundaries are defined by the single contract that was let for the construction of the masonry and steel elements of the bridge, and are represented in the original contract drawings. The property does not therefore extend beyond the bridge itself, its stone and steel-built elements. The property has a very wide setting which is best protected by means other than a buffer zone (see 5.c.8 and 5.c.9)

Map of the Nominated Property
See 1.e

Criteria Under Which Inscription is Proposed
(i), (ii) and (iv)

a. Draft Statement of Outstanding Universal Value

a. Brief Synthesis
The Forth Bridge is a globally-important triumph of engineering, at once structural and aesthetic. Linking the eastern Scottish railway network across the Forth estuary, or forth, it represents the pinnacle of 19th-century bridge construction and is without doubt the world’s greatest cantilever trussed bridge. When opened in 1890 it had the longest bridge spans in the world, a record held for 27 years. No other trussed bridge approaches its perfect balance of structural elegance and strength, nor its overall scale, and no bridge is so distinctive from others as is the Forth Bridge from its peers.

Superlative in its application of novel technologies, the Forth Bridge used and influenced engineering know-how that has become international in scope. It was at that time the most-visited and best-documented construction project in the world. It therefore exerted great influence on civil engineering practice world-over and is an icon to engineers world-wide.

b. Justification for Criteria Under Which Inscription is Proposed
Criterion (i): Represents a Masterpiece of Human Creative Genius
The Forth Bridge is an aesthetic triumph in its avoidance of decoration and yet an achievement of tremendous grace for something so solid. Its steel-built cantilever design represents a unique level of new human creative genius in conquering a scale and depth of natural barrier that had never before been overcome by man.

Criterion (ii): Exhibits an Important Interchange of Human Values on Developments in Architecture and Technology
The Forth Bridge was a crucible for the application to civil engineering of new design principles and new construction methods. It was at that time the most-visited and best-documented construction project in the world. It therefore exerted great influence on civil engineering practice world-over and is an icon to engineers world-wide.

Criterion (iv): An Outstanding Example of a Type of Building, Architectural or Technological Ensemble or Landscape which Illustrates (a) Significant Stage(s) in Human History
The Forth Bridge represents a significant stage in human history, namely the revolution in transport and communications. The railway age, of which it is a potent symbol, was made possible by and influenced the speed and connectivity of, the industrial
revolution. The bridge forms a unique milestone in the evolution of bridge and other steel construction, is innovative in its design, its concept, its materials and in its enormous scale. It marks a landmark event in the application of science to architecture that went on to profoundly influence mankind in ways not limited to bridge-building.

c. Statement of Integrity:
The property fully includes all the attributes that express the Outstanding Universal Value of the Forth Bridge. It and its setting do not suffer from the adverse effects of development or neglect. It rises above all nearby development, sets a benchmark for other bridges at a greater distance, and its condition is good.

d. Statement of Authenticity:
The property has a high degree of authenticity, with very little change having been made to the structural performance or material fabric since it opened in 1890. This can be verified by means of the extensive documentation through photographs taken during and after completion of the works. It has recently benefited from an exemplary conservation programme, with minimal replacement of fabric and it continues in use as a railway bridge connecting eastern Scotland, the purpose for which it was built.

e. Requirements for Protection and Management:
The property has the highest level of building designation, having been included in the statutory list of buildings of special architectural or historic interest at Category ‘A’ on 18th June 1973. It is contained at each end by Conservation Areas, and by other designations affecting the shore and designed landscapes. Its immediate surroundings are therefore protected and managed.

Maintenance is planned ahead through Network Rail’s maintenance programme, monitored from the benchmark of the excellent condition this bridge now has. Processes are in place for consenting change to this listed building that affects its special interest, and for development affecting its setting.

The management and protection arrangements are therefore robust enough to sustain the outstanding universal value of the property. Protection is assured through listed building consent and planning processes that serve well to balance the evolving needs of operational infrastructure and the safeguarding of cultural value. Heritage impact assessment is a tool for managing change. Management relies on monitoring from a sound baseline, a steady programme of maintenance by the owner, attention to community concerns and collaborative pursuit by stakeholders of economic benefits and other opportunities derived from the bridge.

Specific long-term expectations related to key issues include maintenance of strong community support, broadening understanding in the context of world bridges, attention to developments within key views, risk management and inspiring others.

A Management Plan has been prepared by the partners who support this nomination, working together as the Forth Bridges Forum. This partnership is a Transport Scotland-led management forum, established to ensure that local stakeholders’ interests remain at the core of the management of the Forth bridges. The Forth Bridges Forum has undertaken to work together in a strategic partnership for the purposes of promoting the Forth Bridge’s protection, conservation, presentation and transmission to future generations.

Name and Contact Information of Official Local Institution/Agency

Organisation
Historic Scotland

Address
Dr Miles Oglethorpe
Longmore House, Salisbury Place
Edinburgh EH9 1SH
Scotland
United Kingdom

Tel: 44 (0) 131 668 8600
Fax: 44 (0) 131 668 8877

E-mail: Miles.Oglethorpe@scotland.gsi.gov.uk

Website: www.historic-scotland.gov.uk/
Section 1 –

Identification of the Property

1.a State Party and Country
United Kingdom, Scotland

1.b Region
Fife (North end) and City of Edinburgh (South end)

1.c Name of the Property
The Forth Bridge

1.d Geographical Co-Ordinates to the Nearest Second
The centre of the nominated property is at Latitude: 56° 00’ 04” N Longitude: 3° 23’ 23” W (context map NW Europe/UK/Scotland insets)

Above: Map showing the location of the Forth Bridge in the context of the United Kingdom, 2013. (© ESRI (UK) Limited [2013]).
1.e Maps and Plans Showing Boundary of the Property

For statement on Buffer Zone, see 2.a.3 and 5.c, report on setting.

7.5 hectares

Map showing the position of the property in the context of Eastern Scotland showing the Forth and Tay estuaries, current railways and local authority boundaries, 2013. (© Crown Copyright, 2013 Ordnance Survey [Licence Number 100021521])
The Forth Bridge represents the pinnacle of 19th-century bridge construction and is without doubt the world’s greatest trussed bridge. It is a keystone achievement in the world history of bridge-building and of steel construction, and it continues to act as a major artery connecting the north and south of the country by train.

The railway crosses the Firth of Forth in the east of Scotland, 14km (9 miles) west of central Edinburgh, leaving Lothian at Dalmeny and arriving in Fife at North Queensferry. The point chosen is where the Forth Estuary narrows, separating the inner from the outer Forth. Here volcanic sills of hard quartz dolerite outcrop through the sandstone at Hound Point, Inchgarvie, and have long been quarried at North Queensferry.

The Forth Bridge Company was formed in 1873 to carry into effect the design of Thomas Bouch for a twin suspension bridge hung from immensely tall towers. Bouch’s Tay Rail Bridge was already the longest viaduct in the world. Its two mile route from Fife to Dundee covered a broad but relatively shallow expanse of water, and so could be made of multiple girder spans. The disastrous collapse of that bridge in 1879 had a seminal impact on bridge design and construction world-wide, and it brought work on the Forth Bridge to an immediate halt. Yet the North British Railway had confidence that the Tay Bridge would be rebuilt and also that the Forth could safely be crossed.

In 1880 John Fowler and Benjamin Baker started design on the present bridge and in 1882 tenders were issued. Their cantilever viaduct was begun in 1883 by Tanncred, Arrol and Co, lead contractor, devising in the process ways of overcoming many challenges. The bridge opened in 1890 and still operates today as a vital passenger and freight rail connection.

A world wonder of its age, this Victorian engineering marvel was made possible by new technologies. Steel was used here for the first time on a bridge of this scale, the Bessemer process that made economically possible the delivery of great quantities of steel, mostly made in Scotland and Wales. 54,000 tons of mild steel is used in two ways, as main compression struts of rolled steel plate riveted into 4m diameter tubes, and lighter spars that are used in tension. The overall length is of 2,529m (8,297 feet). Each of the two largest spans of the bridge reach across 521m (1,710 feet). Of balanced cantilever design – built so as to balance each other during construction – once they met, each main span comprised two 207m (680 feet) cantilevers and a 107m (350 feet) suspended span hung between them. When completed they were equally the greatest spans in the world, and stayed so until 1917, when 549m (1,801 feet) was achieved in just one span at Quebec, at the third attempt, the first two having failed with much loss of life. No other attempt has since been made to build such a large steel trussed bridge, and none has ever matched the perfect balance of structural elegance and strength represented by the Forth Bridge.

When completed as a bridge in 1889, and opened to rail traffic in March 1890, the bridge was the greatest example of its type. It holds the record for the world’s longest multi-span cantilever bridge. Its distinctive profile is recognised world-over and the bridge is internationally regarded as an icon of Scotland and as a symbol of engineering prowess.
2.a.2 Rationale Behind the Property Boundary

The boundary is that used in the contract drawings. The main contract for constructing the masonry and steel elements of the bridge was let as one. Construction of the bridge was awarded as a distinct contract and this is demarcated from the contracts for building the connecting lines north and south of the bridge. This defines the full extent of the property.

The South (or Queensferry) cantilever pier stands on and includes the caissons set into the water. The central pier stands on the submerged rock of Inchgarvie Island. The Fife pier stands on rock in North Queensferry and allows close access to appreciate the colossal scale of the setbacks from which the riveted steel tubes forming the main frame of the structure spring. Where the bridge strikes land, from the lowest point of the tide beneath it to its embanked abutments and beyond, it lies within Conservation Areas.

Beyond the property, elements associated with earlier ferry piers, and the later Road Bridge, inform the understanding of the crossing point but are not considered part of the property.

The railway runs northward through cuttings, and quarries (formed as building materials for the bridge were extracted) to an approach viaduct at Dalmeny. Beyond North Queensferry and Dalmeny stations, it ceases to have the character of one viaduct, so those stretches of track need not be considered part of the property.

One of the islands in the Firth of Forth is very close to the bridge. Inchgarvie Island is a scheduled monument containing fortifications from medieval times to the First and Second World Wars. Some use was made of the island and of other land in the vicinity, during construction of the bridge, and again by Network Rail in its recent work to the bridge. It is in private ownership and is uninhabited. Scheduling of the island excludes the active Forth Bridge. The bridge does not connect to the island, but to the underlying rock below lowest sea level.

Consideration has been given to the inclusion within the nomination of the embankments beyond the north and south ends of the bridge. These are man-made, and in Fife soon gave way to an equally man-made tunnel and cutting. They were essential to give level access to trains crossing the bridge, and were completed early in the construction works, but they are clearly not physically part of the bridge. Equally, although also maintained by Network Rail, they are not included within the same management regime, and have therefore been excluded from the property as defined in the nomination.

In conclusion, the property is considered to be complete as a single railway viaduct stretching across the estuary from escarpment to escarpment.

<table>
<thead>
<tr>
<th>Bridge Component</th>
<th>Main Construction Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. North Approach Arches</td>
<td>Three granite arches and parapet (not shown)</td>
</tr>
<tr>
<td>2. North Approach Viaduct</td>
<td>Five-span steel viaduct set on stone piers</td>
</tr>
<tr>
<td>3. North Tower</td>
<td>Stone tower containing north portal and counterweight</td>
</tr>
<tr>
<td>4. Fife Pier and Cantilevers</td>
<td>North steel double-cantilever tower on stone piers, with steel internal viaduct</td>
</tr>
<tr>
<td>5. North Suspended Span</td>
<td>Steel bow-truss span linking cantilevers</td>
</tr>
<tr>
<td>6. Inchgarvie Pier and Cantilevers</td>
<td>Central steel double-cantilever tower on steel caissons, with steel internal viaduct</td>
</tr>
<tr>
<td>7. South Suspended Span</td>
<td>South steel double-cantilever tower on steel caissons, with steel internal viaduct</td>
</tr>
<tr>
<td>8. Queensferry Pier and Cantilevers</td>
<td>South steel double-cantilever tower on steel caissons, with steel internal viaduct</td>
</tr>
<tr>
<td>9. Jubilee Tower</td>
<td>Stone tower containing north portal and counterweight</td>
</tr>
<tr>
<td>10. South Approach Viaduct</td>
<td>Ten-span steel viaduct set on stone piers</td>
</tr>
<tr>
<td>11. South Approach Arches</td>
<td>Four granite arches and stone parapet (not shown)</td>
</tr>
<tr>
<td>12. Lighthouse on pier for Bouch's Forth Suspension Bridge</td>
<td>Iron, glass, brick and sandstone.</td>
</tr>
</tbody>
</table>
The property is a landmark from a distance of up to 20km, and contributes in various ways to the setting of so many places that it would be misleading to define a limited area as the only one in which the setting of the bridge must be safeguarded. In light of the UNESCO publication 25 “World Heritage and Buffer Zones” (2009), the Steering Group has concluded that many of the desirable aspirations that could be addressed in the vicinity of the property could better be achieved by avoiding use of the term “buffer”, with its connotations of visual impact and protection against harm, rather than proactive planning. In order to demonstrate this, the setting of the property has been subject to rigorous study by means of key view photography and by viewshed analysis, the results of which can be found in Sections 5.c.8 and 5.c.9.

2.a.3 The Setting of the Bridge, and a Statement as to Why a Buffer Zone is Not Required for the Proper Protection of the Nominated Property

The Forth Bridge is one of the world’s supreme engineering achievements. It epitomises the “can-do” ethos of the high Victorian age with its genesis in the ... continuous thread back to James Watt’s idea for the separate condenser that led to the commercialisation of steam power.

The Forth Bridge today remains an awe-inspiring sight, at least the equal of the greatest and best known bridges in the world - the Sydney Harbour Bridge, the Golden Gate Bridge, the Brooklyn Bridge, the Quebec Bridge, the Akashi-Kaikyo Bridge. In many ways it exceeds them all in its achievement. The leap in greatest clear span was achieved and held for an unprecedented time. The volume of masonry and steel in a single bridge exceeded anything that had gone before - or since. Even today we would call this a heroic enterprise. The fact that it was successfully built over 120 years ago and is still in service is stunning.

The Forth Bridge also changed the way the world regarded the engineering of bridges. The collapse of the first Tay Bridge was a lesson in hubris. Apparently, there were limits to man’s ability to overcome natural forces. Undaunted, the railway company not only set out to build another Tay Bridge, but committed to an even greater enterprise, the Forth Bridge, before the second Tay Bridge was completed and proven in service - an incredibly bold step, even for an age characterised by boldness and confidence. That the Forth Bridge was so successful did a great deal to re-establish confidence in engineering, trade and commerce. The first Tay Bridge became an episode in history. The Forth Bridge redefined the future.

Its value to the economy of Scotland and the UK throughout its life has been significant, and it continues to provide a vital arterial rail link from Edinburgh to Fife and the north. I am confident that its impact on the national economy, through direct journey time-savings, and the wider benefits of stimulating economic activity and property values, will have now comfortably exceeded its initial investment. Moreover, its durable well-maintained construction has led to it continuing to deliver economic value well beyond its original anticipated life, with an estimated 100 years of useful life yet to come. The bridge therefore also represents outstanding economic value, and is, arguably, one of the most distinguished examples of the beneficial impact on today’s economy of our predecessors’ philosophy of “building to last”.

The importance to Scotland of its entrepreneurial builder, Sir William Arrol, was recognised in 2013 with his induction into the Scottish Engineering Hall of Fame. He is currently one of only 15 great engineers so inducted across 300 years of Scottish engineering achievement. Although the merits of the Forth Bridge stand secure in isolation, its setting is also unique. By 2016, there will be an iconic tripointum at Queensferry. Each bridge will be representative of its age - the 19th century steel cantilever, the 20th century suspension bridge, the 21st century cable-stayed bridge.

There is an obvious opportunity to celebrate all of these achievements in some way, but the first and greatest of these is the Forth Bridge, and it is fitting that this supremely important structure, in its own right, be included in the World Heritage list.

Statement in Support of the Forth Bridge

2.b History and Development

The Forth Bridge is one of the world’s supreme engineering achievements. It epitomises the “can-do” ethos of the high Victorian age with its genesis in the industrial revolution. The Forth Bridge is built of steel but it was spawned in steam. James Watt’s flash of inspiration in 1765 in Glasgow led inexorably to the great engineering icons of the steam age - the ships, railway networks and industrial enterprises powered by steam. In many ways the Forth Bridge is an iconic part of that story. It was built for the steam locomotive and it could not have been built without the power of steam. The fact that it is in Scotland represents a continuous thread back to James Watt’s idea for the separate condenser that led to the commercialisation of steam power.

The Union of South Africa, Gresley A4 Pacific steam locomotive built in 1937, taking a train north over the Forth Bridge, April 2013. (© Crown Copyright, reproduced courtesy of Historic Scotland. www.historicscotlandimages.gov.uk, Duncan Peel, dpfb_210413_002)
The Firth of Forth is the largest estuary on the east coast of Scotland, extending 88km in length and widening to 31km at its mouth. It represents a major physical barrier to transport attempting to move, especially north and south to and from Scotland’s capital city, Edinburgh. Until the late 18th century, people had either to take the water by boat or ferry to cross the Firth, or travel 50km west to Stirling to cross the river. For those travelling north or south who did not wish to go all the way to Stirling, a ferry service is known to have operated as early as the 11th century roughly between what is now Queensferry and North Queensferry. These two communities owe their name to Queen Margaret of Scotland who is believed to have established a ferry at this point for pilgrims on their way north to Dunfermline Abbey and St Andrews. She died in 1093 and made her final journey by boat to Dunfermline Abbey, after which she was canonised in 1250 by Pope Innocent IV.

By 1710 purpose-built landings for ferry traffic were established at Hawes Pier, Queensferry Harbour, and at North Queensferry. By 1760, the Queensferry ‘passage ferry’ was said to be the busiest in Scotland, but the poor condition of the loading and landing places was such that the engineer, John Smeaton (1724-92), was invited to advise on improvements.

The Forth Ferry Trustee Company was officially incorporated by Act of Parliament in 1809/1810 and commissioned John Rennie (1761-1821) to provide a pier at Longcraig and Town Piers at a final cost of £23,825. The several landings on each shore were needed as the wind necessitated a variety of landing points for sailing boats.

Improvements continued with the engagement of Robert Stevenson (1712-1850) to assist with lighting arrangements in 1797 and the introduction of the first steamboats began to transform ferry traffic. Being faster and more direct, they were less likely to get stuck in the Firth, and rival services began to appear elsewhere in the Firth of Forth.

2.b.1 Crossing the Firth of Forth by Ferry

2.b.2 The Growth of Railways, and the Need for a Fixed Crossing

The first to commence was the losing two thirds of its passenger business. Piers and harbours there were not well suited to the new steam vessel, the ‘Queensferry Passage’, ‘Broad Ferry’ between Newhaven (on the north side of Edinburgh) and Dysart (adjacent to Kirkcaldy) in 1819. A year later, other steamboats were operating from Newhaven, resulting in the ‘Queensferry Passage’ losing two thirds of its passenger business. Piers and harbours there were not well suited to the new steam vessel, the ‘Queen Margaret’, so in 1828 Thomas Telford (1757-1834), assisted by James Jardine (1776-1858), advised on the extension of the Town Pier. Thus most of the famous names in late 18th-early 19th century British engineering turned their attention to the Queensferry crossing. Ferry services continued across the Firth even after the completion in 1890 of the Forth Bridge, serving increasing number of road passengers and increasing volumes of freight. The last commercial ferry left Queensferry on 3 September 1964, one day before the opening of the Forth Road Bridge.

The Forth of Firth was the narrowest place in the Forth estuary, and had adjacent islands, but there were difficulties due to the great depth at that point necessitating spans of exceptional size. Yet the North British Railway Co had confidence in the engineering of tendons, and speed with which freight and passengers could be carried, whilst very substantially reducing the cost of transport.

Horse-drawn wagon ways had been used for moving coal in mining regions since the 17th century, providing links to rivers, canals, and coasts (the Forth and Charlestons railways on the Fife shore, for example). The advent of steam locomotives, the first of which is attributed to Richard Trevithick (1771-1833) in 1802, opened up major new opportunities. In 1825, the first steam-hauled public railway, the Stockton and Darlington Railway, began operation. In 1830, the Liverpool and Manchester Railway was opened. Engineeried by George Stephenson (1781-1848) and Joseph Locke (1805-80), it is regarded as the world’s first ‘inter-city’ railway and demonstrated the viability of carrying passengers as well as freight.

Despite such increasing troubles, they proved a success, and massive investment ensued in the 1840s, known as the Railway Mania. British engineering turned their attention to the Queensferry crossing. Ferry services continued across the Firth even after the completion in 1890 of the Forth Bridge, serving increasing number of road passengers and vehicles that queued for hours at both Queensferries. This service was improved in the 1930s but rendered redundant by a new road bridge. The last commercial ferry left Queensferry on 3 September 1964, one day before the opening of the Forth Road Bridge.
Passage with all its rights, lands and property in 1867. The Forth Bridge Company was incorporated under an Act of Parliament on 5 August 1873, and authorised to construct a Forth Bridge Railway. It was to carry into effect a design by Thomas Bouch for a twin suspension bridge taking the shortest crossing via Inchgarvie Island, separated by two equally deep and wide channels. This meant that each of the main spans would be the biggest the world had yet seen.

Between 1871 and 1880 Bouch prepared several designs, settling on a double-span steel suspension bridge hung from immensely tall towers. Lacking steel in sufficient quality or quantity at that time, the project was delayed until September 1878, when the foundation was laid for one of the brick piers on the island of Inchgarvie. Bouch paved the way for the bridge that exists today, but not its form or delivery.

Bouch’s Tay Rail Bridge was already the longest viaduct in the world. Its two mile route from Fife to Dundee covered a broad but relatively shallow expanse of water, and so could be made of multiple girder spans. The disastrous collapse in a storm of that bridge on 28 December 1879 had a seminal impact on bridge design and construction world-wide, and it brought work on the Forth Bridge to an immediate halt. Yet the North British Railway had confidence that the Tay Bridge would be rebuilt and also that the Forth could safely be crossed.

With the passing of the new act in 1882 came authorisation and contracts enabling the actual construction of the bridge. But first, a new design had to be sought and was therefore put out to competition. Bouch’s design for the Tay Bridge had massively underestimated wind forces, and in retrospect, his design for the Forth Bridge looked extremely fragile. The Railway Board abandoned his design in 1881, a process which itself required an Act of Parliament.

New proposals were soon invited from the Railway Board’s consulting engineers, Sir John Fowler (1817–98), William Henry Barlow (1812–1902) and Thomas Elliot Harrison (1808–1888), from which emerged the original cantilever design. This was subsequently modified by Fowler and his junior partner, Benjamin Baker (1840–1907), to whom the bridge as built owes most.

With public anxiety high after the Tay Bridge disaster, Parliament imposed much higher specifications on the new design, not least wind loading factors, which were raised from 10 to 56 pounds per square foot. The new cantilever design had many advantages, not least the fact that the cantilever towers were designed to be self-supporting during construction.

2.b.3 The Design of the Forth Bridge

“Engineers ... are not mere technicians and should not approve or lend their name to any project that does not promise to be beneficent to man and the advancement of civilization.”

Sir John Fowler
The Human Cantilever: Foremen including Japanese engineer, Kaichi Watanabe, demonstrate the cantilever principle. His presence for a year as supervisor of one of the towers reinforces proposed listing under criterion (ii), its international influence. [Source: Imperial College London]

A 1,500-ton bending press made by Fullerton, Hodgart & Barclay of Paisley, used at the Forth Bridge Works to shape the mild-steel pieces required for the main members of the Bridge, 1885. (© NAS/RCAHMS. Licensor www.rcahms.gov.uk, DPM10211)

The structure of the bridge takes the form of three double-cantilever towers with cantilever arms to each side. The towers are 110m (361 feet) high above their granite pier foundations, and the cantilever arms are each 207 (680 feet) long, projecting outwards from the towers, (linked together by two suspended spans, each 107m (350 feet) long. The two spans formed by the three towers are 549m (1,801 feet), and were for many years the longest in the world. The central cantilever section of the bridge is augmented at each end by steel approach viaducts sitting on tall granite piers. The bridge is 2.53km (8,296 feet) long in total, and comprises approximately 54,000 tons of mild steel, which includes an estimated 6.5 million rivets.

The cantilever principle was most famously demonstrated by Japanese engineer, Kaichi Watanabe (1858-1932), when in 1887, a year after graduating from the University of Glasgow, he posed for a picture in which he acts as the supported central span, with two men acting as the cantilever towers supporting Watanabe with the counterweights made up of bricks. Watanabe took a post as a foreman on the bridge before returning to Japan in 1888.

2.b.4 The Introduction of Mild Steel

Crucial to the design of the bridge was the decision to build it from steel. Today, most of the steel used for general engineering and construction purposes is known as mild steel, which is chemically very similar to wrought iron in that it contains very low levels of carbon. Its key quality is that it is ductile (and reasonably strong in tension, unlike cast iron, which is brittle and therefore more suited for use in compression. As a consequence, mild steel can be forged, rolled, and worked just like wrought iron. A major difference to wrought iron, however, is that it does not contain any slag threads, and its corrosion resistance is poor.

In the context of structural work, rolled steel can be riveted together to form larger fabricated structures. However, wrought iron production processes do not produce big enough pieces, so fabricating larger structures is much more costly and time-consuming. In contrast, the introduction of mild steel made it possible to produce heavy rolled sections for much larger structures, and a new era of structural steel was born.

Back in the mid-19th century, however, steel was not a cheap product, and building large steel bridges had hitherto been prohibitively expensive. The situation seemed to have changed in the mid-1850s with the development of a ‘converter’ by Henry Bessemer (1813–98), which permitted steel-making in much greater quantities and at considerably lower cost. There were, nevertheless, problems of variable quality with Bessemer steel, a major issue being the impurities caused by blowing air through molten metal, in what was both a violent and spectacular process. Mild steel was therefore initially viewed with suspicion, and it took decades to develop a reputation as a viable competitor to wrought iron. The chief problem was that most iron ores contain phosphorus that could not be removed in the Bessemer process, so Bessemer steel was too brittle to use in civil engineering. This was not overcome until the Gilchrist-Thomas process to line Bessemer converters with chemically basic material was perfected at Blaenavon (now a world heritage site) in 1879.

But none of the structural steel for the Forth Bridge was produced by Bessemer furnaces. All of the steel was made by the acid ‘Open-Hearth’ process. This was developed initially for the glass industry by Carl Wilhelm Siemens (1823–1883), a German who became a naturalised British subject on marrying a Scot. Other branches of that family formed the famous electrical company in Berlin. With the help of adaptations for steel-making by Frenchmen Emil and Pierre Martin, the Siemens-Martin process was patented in 1866.

By the 1870s, open-hearth furnaces were capable of producing increasing quantities of consistently high-quality mild steel. This was the perfect material with which to build a bridge. The Forth Bridge. Extraordinary progress photographs at the time recorded the use of a bewildering array of plate forming machines and machine tools, particularly in and around the ‘brill roadways’ where the main tubular members of the bridge were fabricated. A major advantage was the availability of rapidly advancing boiler making and ship-building in the Glasgow conurbation around the River Clyde, which also took full advantage of the availability of high-quality mild steel plate.

A characteristic of mild steel is that it rusts easily and must therefore be protected to prevent structural decay from corrosion. For this reason, all exposed steel in engineering structures is provided with a protective coating. In the case of the Forth Bridge, this has become a signature feature, a distinctive red oxide paint having been developed by the Edinburgh paint company, Craig & Rose specifically for the...
bridge. Forth Bridge red paint was regularly and continuously applied to the bridge in a seemingly endless painting programme designed to protect the mild steel, giving rise to the phrase, ‘...like painting the Forth Bridge’ in the context of tedious and endless tasks.

There is no doubt that, whilst mild steel made the Forth Bridge, the Forth Bridge helped establish the reputation of mild steel. At the same time, it also made the reputation of William Arrol. Whilst constructing the Forth Bridge, his firm had simultaneously built a new, replacement Tay Bridge, and the principal components of Tower Bridge, London. Sir William Arrol & Company went on to build a large number of iconic steel structures in the UK and overseas, like Bankside (now Tate Modern) and Battersea Power Stations. Between 1960 and 1964 Arrol was also part of the consortium building the Forth Road Bridge, and shortly afterwards, the first Severn Bridge connecting England and Wales.
2.b.5 The Construction of the Forth Bridge

“The Forth Bridge must have been the largest steel structure of any kind in the world (and indeed may still be) in terms of the weight of steel used. The 6.5 million rivets would have permitted the construction of some four or more large ocean-going ships of the period.”

Professor John R Hume, OBE
Industrial archaeologist
Chair, Royal Commission on the Ancient and Historical Monuments of Scotland

The contract for the construction of the Forth Bridge was awarded to Sir Thomas Tancred (1840-1910), Travers Hartley Falkiner, Joseph Phillips and William Arrol (1839-1913) on 21 December 1882. This partnership became Tancred, Arrol & Co, the original contract sum being £1.6 Million. Although Sir Thomas Tancred was an established engineer with considerable experience overseas, William Arrol took control of operations, both at his Dalmarnock Ironworks in Glasgow and on site.

The construction is notable because it was remarkably well documented, both in terms of books, articles and journals, and because of the extraordinarily high quality of the progress photographs that were taken throughout the duration of the project. The construction process was recorded in immense detail by William Westhofen, whose work was published in 1880 in the journal, Engineering. Meanwhile, the work in progress of the photographer, Evelyn Carey, was retained by the Forth Bridge Railway Company and its successor, the British Railways Board, and the hundreds of original glass-plate negatives have since been deposited in the National Records of Scotland and remain part of the British Rail collection.

Westhofen, Carey, Phillips and many other visitors, diarists and photographers, witnessed an extraordinary project unfold over eight years. One of the most exciting features of the works as they progressed was the innovation that occurred, fuelled by the fact that they were using a relatively new material, mild steel, and had a growing range of power and technology available.

For example, Arrol is credited with showing great ingenuity in the design and deployment of equipment, including hydraulic riveting machines, cranes and drilling systems, and early electric lighting, and provided many safety devices for his workers. This minimised the need for temporary works and staging. Much of the labour employed on the bridge was recruited from shipyards of the Clyde and Forth, and steelworkers from Lanarkshire, bringing with them many specialist skills, such as boiler-making, for which Scotland became famous. At the peak of construction, 4,600 men were employed, and the official figure of 57 casualties during the eight years of construction was recently revised upwards to 73. Although tragic, this seems remarkably low for its time considering the scale and sometimes extremely hazardous nature of the construction works.

Construction of the bridge occurred over two phases. The first, from 1882 to 1885, focused on the substructure, the most important part of which was the sinking of the caissons and construction of the foundations and piers on which the upper structure of the bridge sits. This proved to be one of the most hazardous parts of the project, because decompression sickness ‘the bends’ was not fully understood at the time.

On 15 November 1889, less than ten years after the collapse of the first Tay Bridge, The Forth Bridge Railway Company reported that the last permanent connection had been made with the girders of the bridge, and that it had now become a complete structure sustaining the full strain arising from its own weight, from wind and from change of temperature.

The bridge was first tested and used in January 1890, when two 1,000ft long trains consisting of a locomotive with 50 wagons each passed across the bridge side-by-side through the south entrance. Having been tested successfully, the bridge was officially opened on 4 March 1890 when a ‘Golden Rivet’ was driven into place by the Prince of Wales.

2.b.6 The Immediate Impact of the Forth Bridge

Baker and Fowler's winning design attracted a mixed reception in 1882, and amongst its detractors was Sir George Biddell Airy (1801-92), whose advice to Sir Thomas Bouch had resulted in the woefully inadequate wind loading of 10 pounds per square foot of the Tay Bridge. On seeing the new cantilever design of the Forth Bridge, he predicted it would fail in conditions less hostile than those that destroyed the Tay Bridge.

At a less practical, aesthetic level, some people were shocked by the appearance of the bridge. The artist, designer and poet, William Morris (1834-96), seeing it near-complete, lectured that “There never will be an architecture in iron, every improvement in machinery being uglier, until we reach the supremest specimen of all ugliness – the Forth Bridge”. Responding in his speech to the Edinburgh Literary Institute, Benjamin Baker noted that, “It is impossible for anyone to pronounce authoritatively on the beauty of a bridge without knowing its functions. The marble columns of the Parthenon are beautiful where they stand, but if we took a line of them and bored a hole through its axis and used it as a funnel of an Atlantic liner, it would, to my mind, cease to be beautiful; of course, Mr Morris might think otherwise.’

In contrast, the respected architect, Alfred Waterhouse (1830-1905) was delighted by the absence of all ornament or any architectural detail borrowed from any style, which he observed would have been out of place. He commented to Sir John Fowler that, ‘As it is, the bridge is a style unto itself to the simple directness of purpose with which it does its work is splendid, and invites your vast monument with a kind of beauty of its own, differing though it certainly does from all the beautiful things I have ever seen.’

Meanwhile, the practical impact of the opening of the Forth Bridge in March 1890 was immediate. The train ferry service across the Forth immediately ended, whilst the previously isolated railway networks on the east side of the country and in the Highlands were connected to the rest of Scotland and the UK, no longer having to travel west to Stirling and Glasgow.

Both passenger and freight numbers increased rapidly, and a range of industries, such as Malt Whisky distilling, prospered. The bridge effectively unified the east of Scotland economically and socially.

A further impact of the Forth Bridge was that it made the reputation of mild steel, and helped accelerate the disappearance of wrought iron, which is now no longer produced and is impossible to obtain in any quantity.

The reputations of the engineers and contractors were similarly enhanced. Sir William Arrol (also knighted on completion of the bridge) and other Scottish contracting engineers, founded their reputation on the Forth Bridge. The company’s subsequent work can be found in many parts of the world, from the Aswan Dam to the London Underground and the first Aswan dam. Perhaps no other bridge could quite compete with their achievement.
2.b.7
The Operation and Use of The Forth Bridge

By 1907, The Forth Bridge was estimated to be carrying about 30,000 passenger trains a year with a gross weight of 14.6 million tons. In 2000, Railtrack, then the rail operating company and owner of the bridge, reported that it carried about 54,000 passenger trains and 6,240 freight trains with a gross weight of about ten million tons. In 2013, Network Rail, the current owners, report that the bridge is carrying between 190 and 200 train movements on a daily basis, which amounts to almost 70,000 a year; more passengers and less freight. It has therefore been in constant use since 1890, and remains an important part of the UK and Scottish railway network.

This position of confidence was not, however, always so certain. In the second half of the 20th century, the British Railways network began to suffer from major social, economic and industrial change, and especially direct competition from road vehicles. In the face of worsening financial losses, Dr Richard Beeching was invited to consider the future of the railway system, producing in 1963 The Reshaping of British Railways, and then in 1965 The Development of the Major Railway Trunk Routes. The reports recommended closure of over 2,000 stations and 8,000km of railway line, which amounted to over half the UK’s railway stations and 30% of its route km. Most of these closures were implemented, radically reducing the British Railways network and acknowledging major growth in road transport, yet the Forth Bridge survived the cuts.

This shrinkage occurred during a period of public ownership, following nationalisation of the railways in 1947. However, state ownership of public infrastructure was increasingly questioned from the 1970s onwards, with state assets, especially infrastructure and utilities, being returned to the private sector. In 1983 the future of the Forth Bridge was for the first and only time seriously threatened by a review by Sir David Serpell. One of the options considered was total closure of railways north of Glasgow and Edinburgh, which would have ended the operational use of the bridge. This option was not chosen.

The railways were eventually privatised in 1993, producing a new owner of the rail infrastructure, Railtrack, separate from 25 passenger train operating companies, six freight operating companies, and three rolling stock leasing companies. Railtrack was dissolved in 2002 and replaced by Network Rail Ltd, a statutory corporation created as a “not for dividend” private company limited by guarantee, funded by railway users and Government support, all profits being reinvested back into the railway network.

Care and maintenance of the Forth Bridge had declined significantly in the final years of state ownership, generating considerable concern, not least in Parliament. Indeed, photographs taken around the time of the bridge’s centenary in 1990 appear to show very large areas of flaking paint and rust. To its credit, Railtrack made a commitment to reverse this decline, and began the investment that subsequently evolved under Network Rail into a major restoration project.

By December 2011, the steelwork of the entire Bridge had been stripped down to bare metal and repainted with a new glass-flake epoxy system developed for the offshore oil and gas industry. The lead-based paint had been very carefully removed without allowing it to drop into the river below, and the new paint was expected to last for at least 25 years. In addition, a few smaller steel angle sections that had suffered significant corrosion were replaced like-for-like during the restoration programme.

Much of the refurbishment work after 2002 was carried out by Network Rail’s principal contractor, Balfour Beatty as part of a £130 million contract. The paint system is described in more detail in 3.1.d., p.51, but at the height of the contract, there was an average of 400 people working on the bridge daily, using 4,000 tons of scaffolding. Although there will be a continuing maintenance regime, the seemingly endless task of painting the Forth Bridge has, for the time being, come to an end.

Opposite: The Forth Bridge as painted by William Lionel Wyllie in 1914. (© Institution of Civil Engineers)
The bridge has inspired a range of artistic responses. The most famous literary work is probably the novel *The Bridge* by Iain Banks (1986). Banks’ work has received a boost of interest since the author’s untimely death earlier in 2013. Kidnapped by Robert Louis Stevenson featured the Hawes Inn but was set in the 18th century, before the bridge was built. The bridge has also become associated with John Buchan’s *The 39 Steps* by featuring in two film versions, although not in the original novel. The bridge features in First World War naval scenes by marine artists W.L. Wyllie and Sir John Lavery and has attracted numerous other artists. Kate Downie for example, was recently an artist in residence at Inchgarvie Island and interprets well its raw power.

The bridge features in a huge range of popular prints, paintings and drawings, photographs, works of prose, poetry and non-fiction, popular and folk music, digital gaming, railway memorabilia, on bank notes and coins and in commercial advertising as a metaphor for strength, elegance and durability.

Above: Advertisement for a soft drink “made in Scotland from girders” that played to Scottish cultural links to heavy industry. (© Courtesy of A. G. Barr)

Opposite: The Broons® visit the Firth of Forth, 8th July 1951, a comic strip that featured regularly in the UK national newspaper, The Sunday Post, published by DC Thomson in Dundee, Scotland. This particular strip refers to the days when carriage windows could be opened, and passengers threw out penny coins ‘for luck’, a tradition which has its roots in the Tay Bridge Disaster of 1879. (© DC Thomson & Co. Ltd. 2014)
Section 3 - Justification

3.1.a Brief Synthesis

The Forth Bridge is the world’s first monumental-scale steel bridge. When it was built it had the longest spans in the world, was unique in its scale and superlative in its application of novel technologies. It is a keystone achievement in the world history of bridge-building and of steel construction. It has worldwide iconic status as a globally-important triumph of historic engineering.

The genius of its design is at once structural and aesthetic. It perfectly encapsulates the 19th century aspiration of ambition that reinforced the belief in mankind’s ultimate ability to overcome any obstacle to make the impossible possible. The ideas enshrined in this iconic industrial monument had worldwide scientific and architectural application that significantly advanced the condition of mankind and society across the world.

The overall span of 2,529m links Fife to Edinburgh and beyond. Of counterbalanced cantilever design, each of the spans of the bridge consists of two 207m (680 feet) cantilevers and a 107m (350 feet) suspended span. When opened in 1890, they were equally the greatest spans in the world, and stayed so until 1917, when 549m (1,801 feet) was achieved in the single span of the Quebec Bridge. The overall size of the Forth Bridge remains unsurpassed by any other steel trussed bridge, and none of these has matched the perfect balance of structural elegance and strength represented by the Forth Bridge. When completed as a bridge in 1889, and opened in March 1890, the bridge was the greatest example of its type. It simultaneously achieved the longest and second longest spans in the world and held that record for an unprecedented length of time. It still holds the record for the world’s longest multi-span cantilever bridge, whilst its distinctive profile is recognised world-over and internationally regarded both as an icon of Scotland and a symbol of engineering prowess.

3.1.b The Criteria Under Which this Inscription is Proposed (and Justification for Inscription Under these Criteria)

This nomination attests that the Forth Bridge:

(i) represents a masterpiece of human creative genius

As a design solution employing new scientific thought and materials, the steel-built cantilever design represents a unique level of new human creative genius in conquering a scale and depth of natural barrier that had never before been overcome by man. The bridge is an aesthetic triumph in its avoidance of decoration and yet an achievement of tremendous grace for something so solidly built. The aesthetics of large cantilever bridges are discussed below at 3.2.3. Suffice to say here that the Forth Bridge alone among these can be considered an artistic masterpiece. Part of this is owed to the antipathy of Baker to interference by architects in his designs, following his experience of such intervention in Egypt. Yet if there is any monumental architecture that did have some influence on the form of the bridge, it is the Egyptian outline of a pylon traced in the granite portals, with their inward sloping batter and overhanging cornices. By going back to that civilisation, and claiming to
The Forth Bridge is representative of a significant stage in human history, namely the revolution in transport and ... of science to architecture that went on to profoundly influence mankind in ways not limited to bridge-building.

Gustave Eiffel attended the opening less than a year after his Eiffel tower, constructed in now-superseded wrought iron. Direct imitation was almost inconceivable but the Forth Bridge can be said to have exerted great influence on civil engineering practice the world-over and is an icon to engineers world-wide.

Apart from the Forth Bridge, the attention of Fowler and Baker were also consumed by work in Egypt such as the Aswan (Low) Dam. Tancred was already a major contractor in New Zealand. William Arrol made the Forth Bridge the springboard for his world-wide steel contracting business, not only in bridges but also cranes, dock gates, factory buildings and power stations across the world.

As construction was underway an international engineering audience was updated in the pages of Engineering. Yet the first book about the bridge was in German. Already in 1888, (hardback; 1889 paperback) G. Barkhausen, Professor of Hanover Technical High School had published in Germany a book on the Forth Bridge. The author had the opportunity to attend the construction during 1887 and described it as "das neue Weltwunder" (new wonder of the world). A German engineering journal had followed progress from 1882 onwards (see Zeitschr. d. Vereutercher Ingenieure 1882 S. 585; 1884 S. 792; 1885 S. 364 u. 463; 1887 S. 703). This was followed by publications in English at the time of the opening in 1890 by two of the contractors, Philip Phillips and Wilhelm Westhofen. Wilhelm Westhofen trained as a draughtsman in Cologne and Mannheim, Germany, came to England to study iron steel and cement, was made assistant engineer responsible for piers and foundations, then supervising engineer for the Inchtavirge tower and official biographer of the bridge. After this he moved to South Africa, became Head of Engineering and Public Works for Cape Town after first supervising Gourits Bridge, 1892 - a double cantilever bridge, with a central span of 128m (420 feet) and two side spans of 37m (140 feet) each. The height above the river bed, 65m (210 feet), is now used for bungee jumping.

That the Japanese engineer Kaichi Watanabe (1858–1932) spent a year as supervisor of one of the towers of the Forth Bridge reinforces proposed listing under this criterion. Watanabe studied in Japan under Scottish engineer Henry Dyer from 1885, then moved to Glasgow University, graduating with a Civil Engineering and Bachelor of Science degree, and then worked as a construction foreman on the Forth Bridge. His image features on Bank of Scotland £20 bank notes. On his return to Japan in 1888, Kaichi worked as chief engineer for the Nippon Doboku Company and then worked in several other companies. While working with the Hokusetsu Railway Company he patented a fuel saving combustor in which petroleum residue was used. Later in life Kaichi was president of several companies including Sanriju Railway Company, Kansai Gas Company, Tokyo Ishikawajima Shipyard, and Keio Electric Railway Company.

Celebrated French engineer Gustave Eiffel attended the opening less than a year after his Eiffel tower, constructed in now-superseded wrought iron. Direct imitation was almost inconceivable but the Forth Bridge can be said to have exerted great influence on civil engineering practice the world-over and is an icon to engineers world-wide.

Head of Engineering and Public Works for Cape Town after first supervising Gourits Bridge, 1892 - a double cantilever bridge, with a central span of 128m (420 feet) and two side spans of 37m (140 feet) each. The height above the river bed, 65m (210 feet), is now used for bungee jumping. That the Japanese engineer Kaichi Watanabe (1858–1932) spent a year as supervisor of one of the towers of the Forth Bridge reinforces proposed listing under this criterion. Watanabe studied in Japan under Scottish engineer Henry Dyer from 1885, then moved to Glasgow University, graduating with a Civil Engineering and Bachelor of Science degree, and then worked as a construction foreman on the Forth Bridge.

The Forth Bridge was a crucible for the application to civil engineering of new design principles and new construction methods. Consideration was given to wind speeds and thermal changes, the application of hydraulic machinery, and the organisation of the construction effort as an exercise in site and man-management that reduced loss of life. It was at that time the most-visited and best-documented construction project in the world.

Construction was an international effort. The sub-contractor for the caissons was Louis Cousseau of Paris and Antwerp, and a specialist north Italian (with a sprinkling of French, Belgian, Austrian and German) workforce excavated these. Cousseau registered his patent pneumatic "apparatus for removing sand, &c. from harbours, rivers &c." in 1884, during his work at the Forth Bridge. Cousseau also worked on the Suez Canal, harbours in Antwerp and Bilbao, and went on to build the Port of Zeebrugge and ship canal to Bruges in 1896-1905. Specific attributes of the bridge related to this are the caissons below water level.

Islands: The three towers from which the cantilevers balance are founded on caissons sunk into rock in the sea, on the sea-covered part of Inchgarvie Island, and either side of Battery Pier on the North Queensferry headland.

The Queensferry cantilever pier stands on and includes the caissons set into the water. The Fife pier stands on rock in North Queensferry and allows further construction. The Forth Bridge is a most-visited and best-documented construction project in the world.
Some use was made of the island by Network Rail in its recent work to the bridge. It is not proposed to include this or other islands within the property. The scheduling of the island excludes the active Forth Bridge, to avoid excessive complication of management processes. The bridge and the light on Bouch's pier do not connect to the island, but to the underlying rock below lowest sea level.

Other islands are scattered in the outer Forth as far as the Bass Rock and Isle of May, important for birds, lighthouses and other human interaction from ancient times, but none of these specifically relate to crossings of the Forth. The islands of the Forth do not as a collection possess outstanding universal value. Also beyond the property, elements associated with earlier ferry piers, and defences at the entrance to the inner Forth estuary, the key to Rosyth Naval Base, the former location of the Forth Bridge Association, and the Queensferry Crossing (see Question 2 below), are also within the bridgehead zone, but do not form the property per se. The railway runs northward through cuttings, and past quarries, to an approach viaduct at Inverkeithing (an under-deck girder, similarly built of steel, also listed and recently painted Forth Bridge red), and it runs southward on an embankment above Dalmeny. But at and beyond North Queensferry and Dalmeny stations, it ceases to have the character of one viaduct, so those stretches of track are not considered to be a part of the property. Travers Hartley Falkiner was responsible for building these stretches, not Tancred, Arrol & Co. Consideration has been given to the fact that the embankments are man-made, and in Fife soon give way to a tunnel and cutting. They were essential to give level access to trains crossing the bridge, and were completed early in the construction works. They are bounded by stone retaining walls, and management of trees there is a matter for Network Rail. The same big timber top rail, as is used on the bridge proper, is also used on the small bridges carrying track and platforms over roads just before each station, which give a sense of continuity. These under-track bridges are not specifically listed. Dalmeny and North Queensferry Stations, timber and stone platform buildings typical of North British Railway practice of 1890 are separately listed and not considered by Network Rail to form part of the bridge. Therefore they do not form part of the proposed property.

Question 2: Completeness – is the property of adequate size to ensure the complete presentation of the processes and features which convey its significance?

Yes. The property is complete as a single railway viaduct stretching from escarpment to escarpment. Lesser structures associated with crossings of the Forth, like ferry piers, are less directly associated with the Outstanding Universal Value of the bridge and are adequately protected. They do not require inclusion within the property. The immediate setting forms bridgehead zones at each end of the property. Consideration has been given to three other bridges, but it was concluded that none of these should be added to the property:

- **The Tay Rail Bridge** between Fife and Dundee, is physically separate, by 40 miles (65 km), but historically, and in terms of design and construction techniques (Wm Arrol again), historically connected to the Forth Bridge. It was the destruction and rebuilding of the original Tay Bridge that led to the application of science, much better design and construction standards at the Forth Bridge. It is listed category A, continues to carry rail traffic, and contains the surviving girders of the 1878 viaduct on more substantial wrought iron piers, opened in 1887. For a long time it was, at 3.3 km, the longest river crossing in the world, on spans more numerous but less adventurous than those of the Forth Bridge. A refurbishment programme won for Network Rail and its contractors the British Construction Industry Civil Engineering Award in 2003. To include the Tay Bridge would entail a serial nomination, and possibly inclusion of other great bridges around the world. This is not necessary to support the case for the Outstanding Universal Value of the Forth Bridge.

- **The Forth Road Bridge** straddles the same point between North and South Queensferry as the Forth Bridge, and Sir William Arrol & Co was again a principal contractor responsible for its construction, in a consortium also made up of the Cleveland Bridge & Engineering Company and Dorman Long and Co., builders of Sydney Harbour Bridge. Its 1,006m span was for two years the longest outside the USA (whereas the Forth Bridge held the world title for 28 years) so it could not in itself be considered to have Outstanding Universal Value over and above other suspension bridges (George Washington, Golden Gate, Tagus, Verrazano Narrows, Ataturk, Humber or Akashi Kaikyo, the current record-holder) that exceed its length. Corrosion in the cables has been arrested, its condition is being monitored, and it will continue to have a function after the adjacent new road bridge is built. As it is listed (category A), it lends support to the protection of the setting of the Forth Bridge, being a key viewing platform from which to see and appreciate it. Yet it is not so close that each bridge cannot be appreciated in its own right (see comparative study below, where other bridges elsewhere can tend to ‘jostle’ each other).

- **The Queensferry Crossing** is now under construction on the further (west) side of the Road Bridge, which will lie between it and the Forth Bridge. It is to be a four-span cable-stayed bridge, each span being shorter than the main span of the Road Bridge, carried by three single narrower but taller masts. It is an international initiative, the construction of which is in progress and floated across from Gdynia shipyard, Poland, other steelwork fabricated in Spain, and the bridge deck sections in Shanghai, China. But it cannot be stated to be better than any of the top cable-stayed bridges in its class and we do not propose to make out a case for the outstanding universal value of something due for completion in 2016. In 2013, the Structural website contains information on 1,247 cable-stayed bridges, most of them built within the last 30 years.

Gordon Masterton, Chairman of the Institution of Civil Engineers Panel for Historical Engineering Works, has noted that, “There is no doubt that when the new bridge is complete, the estuary will have a unique collection of three bridges representative of the best of bridge design from three different centuries, each visible from the other, but the case for the Forth Bridge as the iconic, ground-breaking structure remains solid, with or without its close neighbours.”

The Inchgarvie tower and island, with the Lothian coastline in the background, August 2012. © Crown Copyright, reproduced courtesy of Historic Scotland, www.historicscotlandimages.gov.uk, Miles Oglethorpe, DSC_7935)

The Tay Road Bridge: South end of the Tay Bridge, Dundee, re-built after the collapse of Sir Thomas Bouch's original railway bridge in 1879. This view, taken in 2001, shows the stumps of the Bouch bridge's piers. © Crown Copyright: ROARAMS. License www.roarams.gov.uk, ROE56456E)

The Inchgarvie tower and island, with the Lothian coastline in the background, August 2012. © Crown Copyright, reproduced courtesy of Historic Scotland, www.historicscotlandimages.gov.uk, Miles Oglethorpe, DSC_7935)

The Inchgarvie tower and island, with the Lothian coastline in the background, August 2012. © Crown Copyright, reproduced courtesy of Historic Scotland, www.historicscotlandimages.gov.uk, Miles Oglethorpe, DSC_7935)

Question 3: State of Conservation – are the attributes conveying Outstanding Universal Value at risk from neglect or decay?

The Forth Bridge is, considering its age, in an excellent state of conservation. The recently-completed refurbishment for the start of Bouch’s suspension bridge contrasting with the:

- "Holbein straddle" of the cantilevers
- Sweeping batter of the stone piers
- Strong tubes for compression elements
- Curved form of bottom chord
- Unusual cantilevered bridge, and relatively small link spans to continue the appearance of a curve
- Water central pier acting as an anchor span (only noticeable in east or west elevation)

Continued use as an essential part of the national rail network is the best means to ensure its continued maintenance. In the highly unlikely event that trains cease to use the bridge, looking far into the future, there is a good track record of other railway bridges being converted to carry roads (Edinburgh Western Relief Road, or Connel Bridge, Argyll), for example, and many more now carry cycleways, pedestrian routes, and could carry forms of transport not yet envisaged. In a few rare cases, other adaptive re-uses have been achieved, so disuse would not necessarily threaten the existence of the bridge. There is no suggestion that this will occur while there is still a role for a railway network in the national economy.

The following table sets out attributes that demonstrate the integrity of the bridge and may be cross-referred to the table of values and attributes given under "Authenticity" at 3.1.d.;

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Integrity</th>
<th>Completeness</th>
<th>State of Conservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete absence of decoration</td>
<td>✓</td>
<td>✓</td>
<td>Plaques may need organising as the awards increase</td>
</tr>
<tr>
<td>Commemorative plaques</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Form

- Diminutive scale of the pier on Inchgarvie for the start of Bouch’s suspension bridge contrasting with the:
 - "Holbein straddle" of the cantilevers
 - Sweeping batter of the stone piers
 - Strong tubes for compression elements
 - Curved form of bottom chord
 - Unusual cantilevered bridge, and relatively small link spans to continue the appearance of a curve
 - Water central pier acting as an anchor span (only noticeable in east or west elevation)

Function and Scale

- Allowance in expansion joints, sliding bed plates and bracing, for thermal effects and extreme wind loads
- Unprecedented 4m diameter dimensions of tubular skewbacks
- Contrasting small scale of houses and all other structures at both Queensferrys
- Steel in riveted tubes form large-section elements when viewed from the ground level (accessible to all)
- Forth Bridge red paint
- Now over a long-lasting glass-flake epoxy coating
- Multiple spars for tension elements, diagonals and when viewed horizontally below track level and at high level (mainly seen by staff)

For train passengers, views:

- From the north, imminent arrival in Edinburgh, Scotland’s capital city, or a significant stage in journeys south
- From the south, the start of an adventure in northern Scotland: a proper journey not just a trip

For other travellers, views:

- From the east, a sense of arrival in Scotland when on a cruise liner, continental passenger ferry or on the flight path into Edinburgh airport

For road-users,

- The tops of the bridge stand out e.g. from the M90 by Crossgates, signal proximity to the Forth and although lower are more eye-catching than the towers of the Road Bridge

User Experiences

- From the north, imminent arrival in Edinburgh, Scotland’s capital city, or a significant stage in journeys south
- From the south, the start of an adventure in northern Scotland: a proper journey not just a trip

(© Crown Copyright, reproduced courtesy of Historic Scotland. www.historicscotlandimages.gov.uk, Miles Oglethorpe, DSC_3728)
Attributes	Integrity	Completeness	State of Conservation
The experience for other residents and visitors
- In North Queensferry, the overwhelming presence of the skewback rising from the rock, and then a widening out of views as bridges diverge southwards. Conservation Area ✔ ✔ ✔
- In Queensferry, a high elevated viaduct, seen from below or in elevation, and the perspective effect of bridges converging on the opposite headland, framing a vista Conservation Area ✔ ✔ ✔
- From small pleasure and four boats, yachts and sea kayaks, the awe-inspiring experience of being dwarfed by a massive structure At sea ✔ ✔ ✔
- From Hound Point, Dalmeny estate, the Brinis, Blackness Castle and Abercorn on the south shore the bridge is silhouetted through the almost-invisible cables of the road bridge, and viewable in true elevation. Designed Landscape Key View ✔ ✔ ✔
- Viewed from Limekilns, Rosyth or Dalgety Bay on the north shore, the bridge is seen at an angle, distinctive in colour and shape amongst other competing elements. Key View ✔ ✔ ✔
- From Dunfermline (New Row, Pittencrieff Park) the three towers over Caithness Hill Key View ✔ ✔ ✔
- From Edinburgh shore (Dremmond, Granton Newhaven) Key View ✔ ✔ ✔
- From Edinburgh Castle, Calton Hill, Arthur’s Seat In View ✔ ✔ ✔
- From Balaclava Hills, West Lothian Council, upper part in elevation, farmland foreground Key View ✔ ✔ ✔
- From Bonhard, Be’ness, Falkirk Council, in elevation, farmland foreground Key View ✔ ✔ ✔
Note that views of the bridge are examined in more depth as ‘viewsheds’ in a separate setting report and viewpoints study at 5.c.8
Other Values
- 73 deaths during construction. Besides graves in local churches and monuments to the dead in the Queensferrries (erected in 2012), the bridge is itself a monument. In and outside bridgehead zone ✔ ✔ ✔
- Workmen’s bothies exist on the bridge, Dalmeny workshops and houses for foremen at 1-16 Rosshill Terrace, Dalmeny, and senior staff at 22 Newhall Rd (Bridge House). They are reminders of the human element. Workmen’s bothies ✔ ✔ ✔
- Major triumph for the contractors, much visited during construction by eminent engineers and non-enginers. ✔ ✔ ✔
- Pioneered use of hydraulic machinery on a large scale ✔ ✔ ✔
- 200 train movements per day: a Monitoring indicator ✔ ✔ ✔

Attributes	Integrity	Completeness	State of Conservation
Located at the historic crossing point, the Queensferry Passage between the towns of Queensferry and North Queensferry (all in bridgehead zone). Attributes include:
- Ferry piers by John Rennie, but with extra buildings on Hawes pier ✔ ✔ ✔
- Related inns and leading lights ✔ ✔ ✔
- Forth Road Bridge, opened 1964, the first long-span suspension bridge in the UK, crosses nearby, and a little further away a cable stay crossing is under construction ✔ ✔ ✔
- Corrosion in cables was identified, monitored and arrested. Strengthened for modern traffic loads at various stages. Toll booths now removed. ✔ ✔ ✔
- Fortifications ranging in date from medieval to Second World War, batteries and coastguard stations perched on Inchgarvie, around quarries in Fife and near both ends of the bridge. All point to the narrowing of the Forth at the point that dictated the location of the bridge. ✔ ✔ ✔
- Variable - House under construction at Carlingnose. Inchgarvie deteriorating slowly. ✔ ✔ ✔
Symbolic/advertisement value
- Commercial drivers: the North British Railway company built both the Forth and Tay bridges only because it was in competition for longer-distance passengers with Caledonian Railway. ✔ ✔ ✔
- The prestigious railway terminus hotels in Edinburgh also reflect this: NB (now the ‘Balmoral’). ✔ ✔ ✔
- Used in bank notes, pound coins (representing Scotland in the UK bridges series), Fife Council’s logo, in commercial advertising (‘Irn Bru made from girders’), the Millennium count-down clock, as a backdrop for political announcements Across Scotland and the UK Use of the Forth Bridge, at once familiar and extraordinary, is higher than ever in an ever increasing range of media ✔ ✔ ✔
- A backdrop to community events like the “Loony Dook” that brings it national attention every New Year. Bridgehead zone ✔ ✔ ✔
In literature and film
- The Thirty Nine Steps uses the Forth Bridge in the first two filmed versions as the point at which Hannay escapes the authorities who are searching the train. Buchan’s book, was set in the Southern Uplands but in 1935, Hitchcock chose to use it for dramatic effect, filmed partly on the bridge, partly in a studio. A 1959 remake makes more use of the actual bridge. ✔ ✔ ✔
- ‘Iain Banks’ novel The Bridge features a fantasy version of the Forth Bridge, on an even more monumental scale, inhabited, and with characters named after the original builders and designers. The Forth Bridge is the stepping off point for a fantastic imagined bridge.
3.1.d Statement of Authenticity

The Forth Bridge maintains a very high level of authenticity. As both a wonder of its age and as an iconic symbol of industrial achievement, the bridge has been described, drawn, painted and photographed throughout its existence. The original plans, drawings and documentation relating to its commission, design and construction are all still in existence, appropriately archived, and permit its design to be compared in exacting detail with today’s bridge. Thus, based upon the high degree of documentation and the numerous later studies covering the bridge’s 125-year lifespan, it is possible to state with complete confidence that the structure as it appears today makes a near exact match to its original form and finish.

Key factors demonstrating authenticity include:

- **Form/Design** - high
- **Materiality/Substance** – a very high percentage of the steel and stone fabric is as built. Only a few rivets and sections of steelwork have had to be replaced, and only a tiny proportion of the weight of the bridge comprises new material added to carry: floodlights, support points, a temporary lift and platform to facilitate future maintenance.

Authenticity: Attributes Table

<table>
<thead>
<tr>
<th>Values</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering form triumphant over style</td>
<td>Complete absence of formal decoration</td>
</tr>
<tr>
<td>Solidity, strength and security (to recover the reputation of railway engineering from the Tay Bridge Disaster)</td>
<td>• Diminutive scale of the pier on Inchgarvie for the start of Bouch’s suspension bridge, contrasting with: • “Holbein straddle” of the towers • Sweeping batter of the stone piers • Strong tubular strut compression elements • Curved form of bottom chord (unlike other cantilever bridges) and relatively small link spans form reassuring pseudo-arches • Wider central tower binds the bridge (noticeable in E or W elevation, not either Queensferry shore)</td>
</tr>
<tr>
<td>Scientific awareness of climatic effects, post Tay Bridge disaster</td>
<td>Allowance for thermal effects and extreme wind loads in expansion joints, sliding bedding plates and bracing</td>
</tr>
<tr>
<td>Gigantic scale</td>
<td>Unprecedented 4m diameter dimensions of tubular skewbacks, the steel foundations members from which the cantilever towers spring.</td>
</tr>
<tr>
<td>Materiality/Substance</td>
<td>A very high percentage of the steel and stone fabric is as built. Only a few rivets and sections of steelwork have had to be replaced, and only a tiny proportion of the weight of the bridge comprises new material added to carry: floodlights, support points, a temporary lift and platform to facilitate future maintenance</td>
</tr>
<tr>
<td>Gateway</td>
<td>For train passengers, views down into the Queensferries, succeeded by glimpses through the tubes and spars, and the echoing sound of the train, makes a crossing a double sensory experience signalling: • From the north, imminent arrival in Edinburgh or a significant stage in journeys south • From the south, the start of an adventure in northern Scotland</td>
</tr>
<tr>
<td>To travellers by air and sea:</td>
<td>To residents and visitors on foot or in small boats:</td>
</tr>
<tr>
<td>• From the east, a sense of arrival in Scotland when on continental passenger ferries, or on the flight path into Edinburgh airport</td>
<td>• in North Queensferry an overwhelming presence in the town of the skewback rising from the rock, and then a widening out of views as bridges diverge southwards</td>
</tr>
<tr>
<td>• in South Queensferry a high elevated viaduct, seen from below or in elevation, and the perspective effect of bridges converging on the opposite headland, framing a vista</td>
<td>• from Dunbar, Blackness Castle and Abercorn on the south shore the bridge is silhouetted through the almost-invisible-cables of the adjacent Forth Road Bridge, and viewable in true elevation</td>
</tr>
<tr>
<td>Landmark dominating its setting (see viewpoint study, for elaboration at 5.c.8)</td>
<td>Human effort and sacrifice</td>
</tr>
<tr>
<td>To residents and visitors on foot or in small boats:</td>
<td>73 deaths occurred during construction. Besides graves in local churches and monuments to the dead in the Queensferries (erected in 2012), the bridge is itself a monument. Workmen’s bothies exist on the bridge and also workshops and houses for staff at 1-16 Rosshill Terrace, Dalmeny for foremen, and senior staff (Bridge House). These are reminders of the human element to the bridge.</td>
</tr>
</tbody>
</table>

View of approach viaduct, and the three piers under construction, 2 August 1887. (© Crown Copyright, National Records of Scotland, BR/FOR/4/34/360)
of that scaffolding was removed in January 2012. A high level of Government funding, via Network Rail, has therefore been used to assure the future of the bridge. It is, then, highly unlikely to fall into disrepair in the foreseeable future.

“The teamwork, dedication and Rail took a fresh look at the century-old problem of maintaining the Forth Bridge and swept away all previously conceived... quality end product ensuring this truly iconic structure will remain in excellent condition for many decades to come. ”

The Fife approach spans (that had paint fell to the ground) started to be cleaned back to bare metal and repainted in 1993. This paint is today in comparatively good condition but has a lesser expected lifespan than the glass-flake paint that...

The top coat today remains Forth Bridge red and the glass-flake epoxy coating beneath should achieve or exceed an expected 20-year lifespan. The work paid close attention to conservation principles and the last...

• Workmen’s ‘Buckies’ or bothies that feature in historic photographs and are still used today for shelter and comfort breaks at the Fife Tower. They do not interrupt the profile of the bridge as they are within the area of the tower just below track level.
• A concrete shelter by the track at the Fife Tower.
• Pads, support points, sockets and brackets left to facilitate scaffolding for future maintenance. These are welded and so are clearly distinguishable from original fabric when seen close-to. (see fig foot of image now on p37)
• A temporary lift and platform at the Fife Tower.

There has been an important change to maintenance practice. The bridge is always subject to ongoing maintenance, and there has been a significant but not now obvious change to the way this is carried out. Steel needs a protective coating, and so an unending task, often described as “like painting the Forth Bridge,” has passed into folklore. After nearly twenty years of work by the owner, Network Rail (and previously Railtrack), the painting of the bridge has become a discontinuous activity. There has been an ongoing requirement that access to some parts of the bridge could only be safely achieved with full enclosure, and it also became clear that if existing surface paints were to be removed down to a base of bare steel without contaminating the Forth with lead and other residue from the original red oxide paint, this process had to be achieved in an enclosed environment. The Fife approach spans (that had been at most issue when flakes of old paint fell to the ground) started to be cleaned back to bare metal and repainted in 1993. This paint is today in comparatively good condition but has a lesser expected lifespan than the glass epoxy flake paint that started to be trialled in 1996. In 1998 representatives of Railtrack (now Network Rail) and Historic Scotland met to discuss a new three-coat protective system derived from technology tested on North Sea offshore oil and gas platforms. There followed a sustained ten-year period in which all parts of the bridge were at some time swathed in scaffolding. The top coat today remains Forth Bridge red and the glass-flake epoxy coating beneath should achieve or exceed an expected 20-year lifespan. The work paid close attention to conservation principles and the last...

All aspects set out in the attribute table (at 3.1.0) are truthfully conveyed by the Forth Bridge. No reconstruction has occurred that might compromise authenticity. Continuing use as a railway bridge guarantees authenticity, because signals and other essential upgraded equipment will be there not to mislead but to deliver the requirements of a modern operational railway. All stages in construction of the bridge were well documented in drawings and by numerous photographs commissioned by the contractors and taken by one of the engineers responsible, E. Carey. They are published in a detailed account of the construction of the bridge by another engineer, Wilhelm Westhofen, in the journal, Engineering, and the glass-plate original photographs are in the possession of the National Records of Scotland. As the bridge was so highly visible, the construction works attracted numerous other photographers, official or not. Archival drawings are informative in showing the evolution of the design. For example, the 1882 contract drawings show extra classical detail to portals with flat lintels, which soon after developed into a simple arched portal, with just a hint of an Egyptian profile. Sketched annotations on versions of these show some reconsideration of steelwork dimensions as it was constructed, better to accommodate trains. So the bridge is itself a laboratory for the application of engineering science, and the departures made from the designs underscore its authenticity.

“Every step (the engineers) took was an experiment on a working scale and every fact they learned was imprinted on their memories by the toil and trouble it has cost.” Wilhelm Westhofen, The Forth Bridge, Engineering (1890).

The Forth Bridge is probably the best-documented work anywhere of 19th century civil engineering. “The result is that we have a better idea today of how it was constructed than possibly any other structure of its time”. Mike Chrimes, Civil Engineering 1839-1889, a Photographic History (1991). These records confirm that the design, material and workmanship (excepting the precise paint system) of the bridge as it was when trains first crossed it that the report on the bridge has to this day. Modest changes in use include:

• Workmen’s ‘Buckies’ or bothies that feature in historic photographs and are still used today for shelter and comfort breaks at the Fife Tower. They are made of sheet steel and are very likely to be almost contemporary with the bridge, the windows and interior fittings having been upgraded. These reminders of human needs underscore the authenticity of the object. They do not interrupt the profile of the bridge as they are within the area of the tower just below track level.

The team of architects and engineers were approached in various ways to bring the bridge back to its former glory. They did not interrupt the profile of the bridge as they are within the area of the tower just below track level.

Located on the site of the historic crossing point on the river between what are now the towns of South and North Queensferry. (The name Queensferry refers to Saint Margaret’s crossing to the then Royal capital of Dunfermline in 1070 for her marriage to King Malcolm Canmore) Attributes such as:
• ferry piers by John Rennie and others
• related infra and leading lights
• Forth Road Bridge, opened 1964, the first long-span suspension bridge in the UK
• Queensferry Crossing
• fortifications ranging in date from medieval to Second World War batteries and coastguard stations perched around quarries in Fife all point to the narrowing of the Forth at the point that dictated the location of the bridge.

The North British Railway company built two bridges (over the Firths of Forth and Tay) because it was in intense competition for longer-distance passengers with Caledonian Railway, and over shorter distances allowed Fife coastfields and commuters to access Edinburgh.
3.1.e Protection and Management Requirements

World Heritage Sites in Scotland are protected through the Town and Country Planning (Scotland) Act 1997 and the Planning etc (Scotland) Act 2006. These provide a framework for local and regional planning policy and act as the principal primary legislation guiding planning and development in Scotland. Scottish Planning Policy (SPP) gives the Government’s national planning policy on the historic environment. It provides for the protection of World Heritage Sites by considering the impact of development on their Outstanding Universal Value, authenticity and integrity. Local policies that protect the property are contained within City of Edinburgh and Fife Local Development Plans. The Queensferry and North Queensferry Conservation Areas, themselves containing listed buildings, give protection to the immediate vicinity on land.

Individual buildings, monuments and areas of special archaeological, architectural or historic interest are designated and protected under the Planning (Listed Building and Conservation Areas) (Scotland) Act 1997 and the 1979 Ancient Monuments and Archaeological Areas Act. In this case, the Forth Bridge is listed at Category ‘A’ under the Town and Country Planning (Scotland) (Listed Buildings and Conservation Areas) Act (1997) as a building of special architectural or historic interest. As a listed building planning authorities “shall have special regard to the desirability of preserving the building, its setting or any features of special architectural or historic interest which it possesses”. In addition, Scottish Ministers must be consulted on any development which affects a category A listed building or its setting (Schedule 5, Town and Country Planning (Development Management Procedure) (Scotland) Regulations 2013).

Changes to the bridge that affect its special interest are subject to listed building consent. A specific Partnership Management Agreement (PMA) tailored to the Forth Bridge is in place to facilitate change in future. Any impact on the attributes that reflect Outstanding Universal Value will be managed through existing legislative systems, and general guidance. See Section 5 for the operation of consents for the bridge, and for the layers of protection that exist in the setting of the bridge.

Requirements and Objectives of the Management Plan

The Management Plan will depend on an active cycle of research, recording, monitoring, planning, and review. With this in mind, and drawing on the experience of existing World Heritage Sites, the Steering Group has identified a number of Management Principles with which it intends to help shape the Action Plan.

Identification
- to conduct further research and surveys as required to improve knowledge and understanding of the property

Protection
- to review the statutory protection of the property, and where appropriate, in the areas adjacent to the site

Conservation
- to maintain, and where desirable enhance the system of assessment and monitoring of the state of conservation of the property already implemented by Network Rail
- to build on the extensive recent restoration work, prioritising essential maintenance works to ensure an appropriate state of conservation of the property, securing additional resources where necessary; and
- to develop and implement effective management measures for all identified environmental pressures, disasters and risks to the property

Presentation
- to implement sustainable visitor management to improve the attractiveness of the property and the surrounding area to visitors without detriment to its Outstanding Universal Value and to the quality of life of the communities living around the bridge; and
- to develop improved interpretation to foster wider understanding and appreciation of the property and present its values to a wide range of audiences

Community Benefit
- to improve the local transport and infrastructure of the areas around the bridge not only to facilitate tourism and other business opportunities, but also for the benefit of the local communities

Historical and Future Generations
- to further engage the local communities and a wider audience in the promotion and appreciation of the property, helping them to harvest the benefits of potential inscription both now and in the future

Management
- to ensure that the efforts and resources of all partners and stakeholders are properly co-ordinated and work towards the achievement of the shared vision of the Plan; and
- to routinely monitor progress and report regularly both on the condition of the property, developments in the areas adjacent to the site, and other sensitive areas relating to its wider setting

This section sets out to identify ways in which the site can be compared with others around the world and to identify, as far as possible, its comparators. The geo-cultural area is global in case of steel bridges because late 19th-century communication within the engineering profession meant that any advance made in one part of the world would soon be known world-over.

Comparisons are made first (3.2.1) according to the construction material used and second (3.2.2) according to its form and span. From this derives the aesthetics of steel bridges, a topic in the case of cantilever bridges. Bridges of the world are next compared (3.2.3) against each other by span, listing first the cantilever truss bridges, and then all types of steel bridges, than all types of man-made spans, and the length of time those records were held by one of the world’s biggest and most famous bridges.

Mild steel is the construction material of the modern age. It is fundamental to the skyscraper and to almost all engineering structures erected today. The ability to use it economically came into being with the development of the Siemens-Martins process in the 1860s, a result of international collaboration. The acid open-hearth steel made by this process could also consume the pig iron from low-phosphorus ores, iron scrap and waste steel returned from the construction yard - a recyclable material. 6% of the steel ordered for the Forth Bridge was returned as scrap - between 3 and 4,000 tons, for re-use as new steel. Earlier production of steel, as opposed to iron, only produced limited quantities not available for use in engineering. For centuries carbon steel gave a sharp edge to wrought iron, but was not itself available in quantities that could be of structural quality. The Bessemer process, patented in 1856, suited only a limited range of ores, suffered quality control issues, and almost all of its production in the 1860s-70s went into railway rails and ships. The transition to steel was first achieved in shipbuilding, notably on the Clyde, paving the way for volume production to enable something as large as the Forth Bridge.

So a big steel bridge could not even be a consideration until around 1880. However international nuances in translation often take 'steel' (acier in French) to be interchangeable with 'iron' (in French, fer, or fonte if cast) so it may be that further explanation is needed of the difference made to engineering practices by the adoption of steel. It made possible the ability to calculate the performance of a material less prone to fluctuation in quality than is iron.

The Forth Bridge is the first major construction in Europe entirely of steel. It has sometimes been stated that the world’s first steel bridge is the Eads Bridge over the Mississippi at St Louis, completed in 1874. This achieved the largest arch spans till then, of 153 and 158m (502 and 520 feet). It was an arched bridge, but one built on cantilever principles to avoid placing centring in the river. Temporary structure formed above the arches canallediered out from each bank until the arches met at the middle, and the over-lying parts could then be removed. The arches are of wrought iron tubes that contain within them bundles of first generation of steel trussed bridges, and its commencement came only four years after the first in the world, which does not survive. It is a uniquely important landmark in the development of steel as the construction medium of the modern age.

That honour went to Glasgow Bridge over the Missouri, which comprises five Whipple trusses, each of 91m (300 feet) span, completed in 1879. Today only the central span remains, but the supporting pier. The overhanging element can be built without false work, or centring, and this made it attractive in cases where the flow in the river or great depths (there is a deep trench in the Forth) make other support measures impossible. The span can be further increased by:

(i) balancing the cantilever, simultaneously building a matching anchor arm that will link back to a solid foundation
(ii) introducing a suspended span (or drop-in truss)

Thus the Forth Bridge comprises three balanced cantilevers that support two suspended spans. The central pier is actually an anchor span. This combination is equalled at no other bridge.

Bridge design responds to topography and the circumstances of site, and may take into account any need for clear space beneath, predicted traffic loadings, and wind speeds, for example. The best-looking bridges are those that respond simply and gracefully to functional need. The main way in which engineers measure them is not by overall length but by the clear spans they achieve. The largest spans now achievable in bridge construction are of the suspension type: Brooklyn Bridge in New York, was completed in 1883 between huge masonry towers. Its span of 486m briefly held the world record (by 0.66%) until exceeded by the Forth Bridge in 1899/90.

The Forth Bridge is the therefore the largest and oldest surviving of the first generation of steel trussed bridges, and its commencement came only four years after the first in the world, which does not survive. It is a uniquely important landmark in the development of steel as the construction medium of the modern age.
great humps stood out from a distance, 52m (170 feet) high, and the suspended span between them is relatively long and low. “Contemplating the monstrosity of the design” exercised engineers even before it was built, and The Engineer (July 11 1884) was among the “somewhat unmerciful criticism of the appearance of the bridge” Husband, (1899)

“The appearance of this bridge is bizarre in the extreme, and the structure is economic in neither weight of material nor in cost of shopwork” (J.A.L. Waddell, Bridge Engineering, 1916). However that is a consequence of it being a prototype, and also of an erection process that had no access to on-site fabrication shops or hydraulic machinery.

Poughkeepsie Bridge, New York State, USA, has no structure rising above the deck, so the bridge bellies downwards at its three cantilever spans, each of 160m anchor spans. At the time of opening, the spans had already been surpassed by Lansdowne Bridge in India (also 1889, see above), but are barely one third the size of those of the Forth Bridge. They were each strengthened by a third line of trusses in 1912. Its function has changed from railroa to a pedestrian route, the Hudson Valley Greenway. So it is contemporary and has many approach spans, but crosses a much smaller river, has been more altered than the Forth Bridge, and its long-term maintenance liability depends on local volunteers. The bridge sets a good example of the value of local conservation efforts, but it “can lay very little claim to anything approaching a pleasing appearance, whilst the third (the Forth Bridge) is infinitely more graceful than either of the others” (Joseph Husband, “On the Aesthetic Treatment of Bridge Structures”, Minutes of the Proceedings of the Institution of Civil Engineers, Volume 145 (1901)

Quebec Bridge, Canada saw the only attempt made to challenge the Forth Bridge in form and scale. The supervising engineer had considered the Forth Bridge to be over-engineered. “The clumsiest and most awkward piece of engineering in my opinion that was ever constructed” – is the verdict on the Forth Bridge of Theodore Cooper. The words would haunt him as he approved the design of the first Quebec Bridge, which collapsed with the loss of 76 lives during construction in 1907.

A second collapse as the suspended span was hoisted into position on a new and less elegant bridge in 1916 cost a further 13 lives. This may have been a consequence of extending the length at design stage from 490 to 548.6m, without compensating for the need to balance the ends. The failures here show just how far cantilever bridges were pushing at the boundaries of what was possible. When finally completed in 1917, Quebec took the record from the Forth Bridge for a single span. But the Forth Bridge is much longer overall, and its arches form elegant curves, whereas Quebec Bridge is angular, looking as though it should pivot on its piers. The suspended span is comparatively large and ungainly compared to the cantilever arms and to those at the Forth Bridge. If the overall span were measured and compared between the centres of the piers just one span of the Forth Bridge would be the larger. This is demonstrated even in the publicity put out on the opening of Quebec Bridge, comparing the spans of cantilever bridges. See p.58.

No further cantilever bridge would ever challenge the record span. One was designed by Charles Evan Fowler in 1914 to cross the East Bay at San Francisco by 2,000-foot spans, and drawings bear a strong resemblance to the Forth Bridge, in its four piers acting as a central anchor span and its curved underpides, but no batter. The larger-section compressive members were to be octagonal not tubular, to ease fabrication off site and simplify connections made in situ, but it was not to be built. A table of the largest trussed bridges, all of them cantilevers, is given at 3.2.4.

Below: In the illustration taken from Waddell, Bridge Engineering, p.195 (1916) the then three largest cantilever spans (Forth, Queensboro, named here as Blackwell’s Island, and Lansdowne) were drawn side by side but not to scale. In reality it would take more than two Lansdowne bridges to equal one span of the Forth Bridge, rather than the other way around.

Bottom: Overall view looking downstream with western shores of Hudson River in background - Poughkeepsie Bridge, Spanning Hudson River, Poughkeepsie, Dutchess County, New York, USA, c. 1968. (© Library of Congress Prints and Photographs Division Washington, D.C. 20540 USA. HAER NY,14-POKER—2)

Artist’s impression in a postcard published for the Canadian Railway News Co Ltd, Montreal. The caption on the reverse states it to be “90 feet longer than the famous Forth Bridge” but omits the fact that this is just one span, not the length overall. (private collection)
In his two volume masterwork Bridge Engineering (1916), J.A Waddell gives a critique of each large cantilever bridge then in existence. Waddell offers an American perspective on what was considered state-of-the-art. The table opposite compiles the bridges listed by Waddell and ranks the world's largest cantilever bridges in 1916 with spans of over 120ft. As many bridges were named after the date at which they were published in contemporary engineering periodicals, later names had to be deduced and are given in the second column. Bridges that no longer exist are in square brackets.

Thus, out of 20 of the largest steel cantilever bridges built by 1916, seven (35%) have been demolished. Eleven are in use for traffic (55%), some of them having switched from railway to road vehicles (e.g. Royal Alexandra, and Connel). Two are no longer in use for traffic ... showing that bridges of that scale have a certain robustness if they make it through the hazardous construction phase.

Waddell makes subjective points about the aesthetics of each of the bridges he discusses, and he acknowledges that these are from an American perspective. Accordingly bridges that are built by Europeans in Europe or in other parts of the World - Lansdowne in what is now Pakistan, by British engineers, and Luokou in China, by German engineers - are considered defective in ... length and to Waddell its truss depths were “far too small for economy and appearance. “ Attempts to influence design for aesthetic purposes are looked at with some disdain, but nevertheless he does not shirk some of the aesthetic issues that can arise with cantilever bridges. American bridges could be the worst offenders in this respect.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name and Town</th>
<th>Later Name and Town if Appropriate</th>
<th>Longest Span</th>
<th>State (in USA) and Country</th>
<th>Year Completed [/Demolished]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Firth of Forth</td>
<td>Forth, Queensferry</td>
<td>521 m (1710 ft.)</td>
<td>UK</td>
<td>1890</td>
</tr>
<tr>
<td>2</td>
<td>Blackwell's Island</td>
<td>Queensboro, 59th Street, New York</td>
<td>360 m (1182 ft.)</td>
<td>NY, USA</td>
<td>1909</td>
</tr>
<tr>
<td>3</td>
<td>Landsdowne</td>
<td>Sukkur, Rivzi</td>
<td>250 m (820 ft.)</td>
<td>Pakistan</td>
<td>1889</td>
</tr>
<tr>
<td>4</td>
<td>Morongahela</td>
<td>Pittsburgh, Wabash RR</td>
<td>247 m (812 ft.)</td>
<td>Pa, USA</td>
<td>1904 [/1948]</td>
</tr>
<tr>
<td>5</td>
<td>Memphis Old and New</td>
<td>Frisco, Harahan</td>
<td>241 m (790 ft.)</td>
<td>Tr, USA</td>
<td>1892 and 1917</td>
</tr>
<tr>
<td>6</td>
<td>Beaver RR</td>
<td>Beaver, Ohio River</td>
<td>236 m (768 ft.)</td>
<td>Pa, USA</td>
<td>1911</td>
</tr>
<tr>
<td>7</td>
<td>Slessickysy</td>
<td>Slessickysy Highway</td>
<td>230 m (750 ft.)</td>
<td>Pa, USA</td>
<td>1911 [/1980]</td>
</tr>
<tr>
<td>8</td>
<td>Mingo-Junction</td>
<td>Mingo-Junction</td>
<td>213 m (700 ft.)</td>
<td>Pa, USA</td>
<td>1904</td>
</tr>
<tr>
<td>9</td>
<td>Thbies</td>
<td>Thbies</td>
<td>196 m (647 ft.)</td>
<td>II, USA</td>
<td>1905</td>
</tr>
<tr>
<td>10</td>
<td>[Ruhrort]</td>
<td>Admiral Scheer-brucke</td>
<td>203 m (667 ft.)</td>
<td>Germany</td>
<td>1907 [/1945]</td>
</tr>
<tr>
<td>11</td>
<td>[Red Rock RR]</td>
<td>bclama highway 66</td>
<td>201 m (660 ft.)</td>
<td>IA/CA, USA</td>
<td>1890 [/1978]</td>
</tr>
<tr>
<td>12</td>
<td>Marietta</td>
<td>Williamstown-Marietta</td>
<td>198 m (650 ft.)</td>
<td>OH/NY, USA</td>
<td>1903 [/1992]</td>
</tr>
<tr>
<td>13</td>
<td>Cernavoda</td>
<td>Anghei Salagy-Birosea</td>
<td>191 m (622 ft.)</td>
<td>Romania</td>
<td>1896</td>
</tr>
<tr>
<td>14</td>
<td>Inter Provincial</td>
<td>Royal Alexandra, Ottawa</td>
<td>172 m (566 ft.)</td>
<td>Canada</td>
<td>1901</td>
</tr>
<tr>
<td>15</td>
<td>Young's High Bridge</td>
<td>Young's High Bridge</td>
<td>168 m (551 ft.)</td>
<td>KY, USA</td>
<td>1889 [/1985]</td>
</tr>
<tr>
<td>16</td>
<td>Poughkeepsie</td>
<td>Poughkeepsie</td>
<td>167 m (548 ft.)</td>
<td>NY, USA</td>
<td>1889 [/1974]</td>
</tr>
<tr>
<td>17</td>
<td>Tsinan fu on Tianjin - Pukuo Railway</td>
<td>Luokou Huahe High Bridge</td>
<td>165 m (540 ft.)</td>
<td>China</td>
<td>1912</td>
</tr>
<tr>
<td>18</td>
<td>Long Lake Highway</td>
<td>Long Lake Highway</td>
<td>164 m (540 ft.)</td>
<td>NY, USA</td>
<td>[replaced in 1940]</td>
</tr>
<tr>
<td>19</td>
<td>Connel</td>
<td>Connel, Argyll</td>
<td>160 m (525 ft.)</td>
<td>UK</td>
<td>1905</td>
</tr>
<tr>
<td>20</td>
<td>Cincinnati & Newport Highway</td>
<td>Cincinnati Highway</td>
<td>156 m (516 ft.)</td>
<td>KY, USA</td>
<td>1911 [/1992]</td>
</tr>
</tbody>
</table>

Source: JA Waddell, Bridge Engineering (1916), cross-referred against Bridge Hunter, Structural, HAER, Library of Congress and individual websites. The Harahan or New Memphis Bridge is combined in the ranking with the adjacent Frisco Bridge as it opened in 1916, is discussed by Waddell and has the same spans. Tyone (now Young’s) bridge has moved up in the rankings because its span is greater than Waddell gives in this text. Long Lake Highway Bridge has disappeared without trace, “a very light highway structure built as cheaply as possible” and the bridge now there was built in 1940, but images were obtainable of all of the other bridges.
Memphis / Frisco Bridge is “both unsightly and uneconomic of material,” according to Waddell, due to a War Department requirement to have the widest span at one side. This was the third longest railway span in the world at 241m (790 feet) when completed in 1892. A second bridge is immediately alongside – Harahan Bridge, 1916, with abandoned “side car” timber-decked roadways, the same spans but a deeper truss deck - and on the left, a road bridge for Interstate 55 (1949). This tripointum of bridges crowed in the earliest bridge, restricting views from the side.

Thebes Bridge, 1905: its cantilever spans of 205m (671 feet) and 158m (518 feet) are “too squat for fine appearance” (Waddell). This and the Memphis bridges had gone too far down the utilitarian route, without gateway statements at the start and end of the cantilevers. The aesthetic solution was to give more attention to symmetry and height to the beginning and end of each cantilever span. The formidable nature of the superstructure could be made acceptable by adopting the superficial curves of a suspension bridge. This is what most early 20th century cantilever bridges attempted to do, going in the opposite direction from the Forth Bridge’s reference to arched forms. The results were variously convincing, depending on the skill of designer and contractor, and the circumstances of the site.

Railroad bridges might adopt pronounced crests at the tops of piers, like those that survive from Waddell’s list, at Beaver and Mingo Junction. So they have something like an apparent curve to the main span. They differ from the Forth Bridge in scale and in the fact that the Forth Bridge has its curve as a supporting-looking pseudo-arch beneath the deck.

Queensboro Bridge, or 59th Street Bridge, by Gustav Lindenthal, named in the named above as Blackwells Island Bridge, was much discussed in engineering circles at the design and construction phases. It had the longest span in the Americas until Quebec Bridge, 1917. But according to Waddell “the layout of this bridge was a constructive lie. The top chords of the long spans were made into a continuous curve to resemble the curves of a suspension bridge, the object being aesthetics.” In retrospect it may be said that making a bridge aesthetically pleasing enough to fit well in the cityscape of a great metropolis is the duty of a bridge designer, and this has been achieved, To Waddell its performance was questionable, and changes to loadings were made after the Quebec collapse in 1907. After rehabilitation in 1995-2001 it carries nine traffic lanes into Manhattan.

Cernavod, (1895) over the Danube in Romania “may seem odd to the trained eyes of American engineers, [but] its appearance is not altogether unpleasing, because the perfect symmetry in its layout is quite striking” (Waddell). Angelic. Skilfully achieved by having four spans of the same length, although two acted as anchor spans and two as cantilever spans, building up to one longer centre span, each framed by higher points. Also known as the King Carol I bridge it has National Romantic style masonry portals. It too features in the TIDCIH/ICOMDS list of potential world heritage bridges, under steel. See http://www.360cities.net/image/saligny08#373.10,3.32,37.7.

Loschwitzer Brücke (above) (Das Blaue Wunder Bridge) is perhaps the most interesting of these bridges. Situated in Dresden, it was built in 1893, has been described as neither a suspension bridge, as the hangars are braced, nor a cantilever bridge, but it does seem to perform like the latter. “The central span doesn’t look like it is merely supported vertically by the ends of the cantilevers. It looks like a full moment connection, in which case out of balance live loads may be putting the central span into compression. However, the live load variations will probably be relatively small compared to the dead load. Depending on how the bridge was constructed, this is likely to have given the effect of a suspended span”, that is one dropped into a cantilever bridge (Gordon Masterton). A new bridge to alleviate traffic opened in 2013.

As these bridges were relatively, small they were not discussed by Waddell. To another commentator on bridge aesthetics, Joseph Husband, methods of disguising a cantilever as an arch or a suspension bridge are “impostures [sic], and the diminishing depth towards the centre of the suspended span violates the primary law of economic design.” (Minutes of the Proceedings of the Institution of Civil Engineers, Volume 145 (1901)
Distribution of Steelwork
Many larger cantilever bridges are found wanting aesthetically even if they make a formidable impression in terms of bulk. They are either “top heavy” or “bottom heavy”.

- “Top heavy” bridges, the structure almost all above the road deck, with masonry piers below, are the most commonly found type in America, for example: Queensboro, Beaver, Mingo Junction, Thebes, Memphis. This type continued into the present day. The largest examples are listed at 3.2.3, but mention should also be made of these for their impact on the skyline of cities. Montreal and Brisbane respectively, even ones already containing tall buildings.

- “Bottom Heavy” Bridges with substructure all below road deck tend to occur over deep gorges, such as Young’s/Tyrone bridge, USA, or Gourits Bridge, South Africa (by Baker and Westhoffen, 1892). They may be cheaper where their substructure is also steel, not masonry. But reliance on steel in compression was not considered best practice, and more of these are now disused except by bungee jumpers.

- The happy medium of almost equal distribution above and below the deck, so reducing the apparent bulk of the steelwork, as was done at the Forth and Quebec Bridges, is quite rare. The number of cantilever bridges that distributed structure below as well as above deck is limited. Royal Alexandra Bridge in Ottawa has some few elements of its cantilevers below road level, and so does Connel Bridge in Scotland, showing some influence carried over from the Forth Bridge.

<table>
<thead>
<tr>
<th>Bridge</th>
<th>Dimensions</th>
<th>Country</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacques Cartier Bridge</td>
<td>334 m</td>
<td>Canada</td>
<td>1930</td>
</tr>
<tr>
<td>Story Bridge</td>
<td>282 m</td>
<td>Australia</td>
<td>1940</td>
</tr>
</tbody>
</table>

One of the most perceptual comments was made by the much respected architectural photographer, Eric de Maré, in his book, Bridges of Britain, published in 1924. He noted that, “When completed it staggered the world and it remains an extraordinarily impressive spectacle – a national symbol for Scotland... The design scars all affection; it has a difficult job to do and it does it with a simple, functional directness and a superb, unselfconscious confidence.”

Busy Locations: a bridge at an optimum crossing point may later be jostled by other bridges which blur the clarity with which they can be appreciated. This applies to Memphis (Frisco/Hanrahan), Cernavodă and Lansdowne bridges for example. Frisco Bridge would not anyway have looked well in elevation because of its asymmetry. The suspended-deck arched bridge beside Landsdowne has attracted its admirers and is at least easily distinguishable from the cantilever bridge. Compared to these, the Forth Bridge clearly stands apart from its later neighbours when viewed from most angles (see viewpoint study at 5.c.8). Writers on the aesthetics of bridges are united on the supreme aesthetic achievement of the Forth Bridge.
The website “Structurase” lists 178 cantilever bridges around the world. Of these 26 have been demolished, three are out of service and one is under construction. This form of bridge is rather less common than other basic forms (the arch, the girder, the suspension), but not so rare as to make the Forth Bridge a dead end in bridge evolution. It is a class of trussed bridge, of which there are many more examples, but only cantilever bridges can achieve great spans. It is evident that the Quebec and Forth Bridges are in a class apart. It is a striking fact that there has been no attempt to surpass these in the last 80 years. All but two of the other more recent bridges are below 500m in span.

Howrah, 1943, Nanko, 1974 and Tokyo Bay, 2010, are of 457m, 510m and 440m respectively. The other major cantilevers, between 360 and 501m span, are in USA. The Forth and Quebec bridges had already set a standard that none of these were to surpass.

The next table examines the length of time that bridges of all types held the record span. It demonstrates that the Forth Bridge was the longest-standing record holder in modern times, and only the Golden Gate Bridge at San Francisco came close to that record. As the Forth Bridge has two equal main spans, two half spans and a run of closer-span viaducts at each end, it comfortably exceeded the total length of every one of these celebrated bridges until 1988.

Time Line of Record-Holding Bridge Spans of all Types

<table>
<thead>
<tr>
<th>Year</th>
<th>Bridge</th>
<th>(Current State)</th>
<th>Span (m)</th>
<th>Type; Length of Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>1889</td>
<td>Forth Bridge, UK</td>
<td>521 (x2)</td>
<td>Cantilever, 28 years</td>
<td></td>
</tr>
<tr>
<td>1883</td>
<td>Brooklyn, NY, USA</td>
<td>486</td>
<td>Suspension, 6 years</td>
<td></td>
</tr>
<tr>
<td>1869</td>
<td>Niagara, Clifton (destroyed 1889)</td>
<td>410</td>
<td>Suspension, 14 years</td>
<td></td>
</tr>
<tr>
<td>1867/ 1856</td>
<td>Roebling/ Cincinnati, OH, USA (steel cables added 1899)</td>
<td>432</td>
<td>Suspension, 2 years</td>
<td></td>
</tr>
<tr>
<td>1858</td>
<td>Wheeling, WV, USA (rebuilt after collapse 1854, modified 1860, 1872)</td>
<td>308</td>
<td>Suspension, 5 years and 11 years</td>
<td></td>
</tr>
<tr>
<td>1834</td>
<td>Zaanstreek Bridges, Fribourg, Switzerland (Demolished in 1920s)</td>
<td>271</td>
<td>Suspension, 15 years</td>
<td></td>
</tr>
<tr>
<td>1826/ 1840</td>
<td>Menai, Wales UK, reconstructed 1940</td>
<td>176</td>
<td>Suspension, 8 years</td>
<td></td>
</tr>
<tr>
<td>1940</td>
<td>or 1374</td>
<td>137</td>
<td>Suspension, 400 years</td>
<td></td>
</tr>
</tbody>
</table>

Present Day Cantilever Bridges Compared by Span

<table>
<thead>
<tr>
<th>No</th>
<th>Bridge</th>
<th>Span (m)</th>
<th>Location</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pont de Quebec</td>
<td>549</td>
<td>Quebec City, Canada</td>
<td>1917</td>
</tr>
<tr>
<td>2</td>
<td>The Forth Bridge</td>
<td>521 (x2)</td>
<td>Fife/Edinburgh, Scotland, UK</td>
<td>1890</td>
</tr>
<tr>
<td>3</td>
<td>Minato or Nanko</td>
<td>510</td>
<td>Osaka, Japan</td>
<td>1974</td>
</tr>
<tr>
<td>4</td>
<td>Commodore Barry</td>
<td>501</td>
<td>Chester, PA USA</td>
<td>1974</td>
</tr>
<tr>
<td>5</td>
<td>Greater New Orleans</td>
<td>480</td>
<td>New Orleans, LA USA</td>
<td>1998</td>
</tr>
<tr>
<td>7</td>
<td>Howrah</td>
<td>457</td>
<td>Calcutta, India</td>
<td>1943</td>
</tr>
<tr>
<td>8</td>
<td>Veterans Memorial</td>
<td>445</td>
<td>Gramercy LA USA</td>
<td>1996</td>
</tr>
<tr>
<td>9</td>
<td>Tokyo Bay</td>
<td>440</td>
<td>Tokyo, Japan</td>
<td>2010</td>
</tr>
<tr>
<td>10</td>
<td>Transbay/ East Bay</td>
<td>427</td>
<td>San Francisco, CA USA</td>
<td>1938</td>
</tr>
</tbody>
</table>

From this perspective the Forth Bridge had the last of the great spans achieved by a bridge before the advent of cables, not capable of carrying vehicles, that took over the record books. The first two cables that exceeded the span of the Forth Bridge no longer exist. In fact the Forth Bridge simultaneously held first and second place, then second and third place, because it has two equal main spans.

Other Bridge Types

Steel-arched bridges can look elegant, such as Bayonne (USA), 1931, and Sydney Harbour Bridge (Australia), 1932, of 510 and 509m span respectively. None, however, can cross stretches of water as large as the Forth because each arch must be restrained by large abutments. Concrete, wrought-iron, cast-iron and masonry arches are smaller still, and so are tubular and trussed girder bridges, such as Britannia and Royal Albert (both UK), Tocew (Poland) and Yenisei (Russia, see below at 3.2.8) railway bridges.

Timeline of Record-Holding Spans of all Types

<table>
<thead>
<tr>
<th>Year</th>
<th>Place</th>
<th>Span (m)</th>
<th>Type; length of record</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>Ameralik, Greenland</td>
<td>5376</td>
<td>Power Line</td>
</tr>
<tr>
<td>1975</td>
<td>Sogneford 1, Norway</td>
<td>4850</td>
<td>Power Line, 18 years</td>
</tr>
<tr>
<td>1966</td>
<td>Messina Straits, Italy</td>
<td>3646</td>
<td>Power Line, 19 years</td>
</tr>
<tr>
<td>1937</td>
<td>Golden Gate, CA, USA</td>
<td>1280</td>
<td>Bridge, 20 years</td>
</tr>
<tr>
<td>1934</td>
<td>George Washington, NJ, USA</td>
<td>1067</td>
<td>Bridge, 3 years</td>
</tr>
<tr>
<td>1920</td>
<td>Hempstead Radio Antenna, Germany (reduced in 1934)</td>
<td>2580</td>
<td>Between mountains, 14 years</td>
</tr>
<tr>
<td>1901</td>
<td>Carquinez Strait, Oakland USA (removed in 1930)</td>
<td>1350</td>
<td>Power line, 19 years</td>
</tr>
</tbody>
</table>

Note:
- The website “Structurase” lists 178 cantilever bridges around the world. Of these 26 have been demolished, three are out of service and one is under construction. This form of bridge is rather less common than other basic forms (the arch, the girder, the suspension), but not so rare as to make the Forth Bridge a dead end in bridge evolution.
- It is a class of trussed bridge, of which there are many more examples, but only cantilever bridges can achieve great spans.
- It is evident that the Quebec and Forth Bridges are in a class apart. It is a striking fact that there has been no attempt to surpass these in the last 80 years. All but two of the other more recent bridges are below 500m in span.
- Howrah, 1943, Nanko, 1974 and Tokyo Bay, 2010, are of 457m, 510m and 440m respectively. The other major cantilevers, between 360 and 501m span, are in USA. The Forth and Quebec bridges had already set a standard that none of these were to surpass.
- The next table examines the length of time that bridges of all types held the record span. It demonstrates that the Forth Bridge was the longest-standing record holder in modern times, and only the Golden Gate Bridge at San Francisco came close to that record. As the Forth Bridge has two equal main spans, two half spans and a run of closer-span viaducts at each end, it comfortably exceeded the total length of every one of these celebrated bridges until 1988.

References:
- Dupré’s, (1997), and for up to date base sources various web pages including one related only to suspension bridges, placed in date order. All bridges listed here were also checked against the Structurase website.

Present Day Cantilever Bridges Compared by Span

<table>
<thead>
<tr>
<th>No</th>
<th>Bridge</th>
<th>Span (m)</th>
<th>Location</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pont de Quebec</td>
<td>549</td>
<td>Quebec City, Canada</td>
<td>1917</td>
</tr>
<tr>
<td>2</td>
<td>The Forth Bridge</td>
<td>521 (x2)</td>
<td>Fife/Edinburgh, Scotland, UK</td>
<td>1890</td>
</tr>
<tr>
<td>3</td>
<td>Minato or Nanko</td>
<td>510</td>
<td>Osaka, Japan</td>
<td>1974</td>
</tr>
<tr>
<td>4</td>
<td>Commodore Barry</td>
<td>501</td>
<td>Chester, PA USA</td>
<td>1974</td>
</tr>
<tr>
<td>5</td>
<td>Greater New Orleans</td>
<td>480</td>
<td>New Orleans, LA USA</td>
<td>1998</td>
</tr>
<tr>
<td>7</td>
<td>Howrah</td>
<td>457</td>
<td>Calcutta, India</td>
<td>1943</td>
</tr>
<tr>
<td>8</td>
<td>Veterans Memorial</td>
<td>445</td>
<td>Gramercy LA USA</td>
<td>1996</td>
</tr>
<tr>
<td>9</td>
<td>Tokyo Bay</td>
<td>440</td>
<td>Tokyo, Japan</td>
<td>2010</td>
</tr>
<tr>
<td>10</td>
<td>Transbay/ East Bay</td>
<td>427</td>
<td>San Francisco, CA USA</td>
<td>1938</td>
</tr>
</tbody>
</table>

Time Line of Record-Holding Bridge Spans of all Types

<table>
<thead>
<tr>
<th>Year</th>
<th>Bridge</th>
<th>(Current State)</th>
<th>Span (m)</th>
<th>Type; Length of Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>1889</td>
<td>Forth Bridge, UK</td>
<td>521 (x2)</td>
<td>Cantilever, 28 years</td>
<td></td>
</tr>
<tr>
<td>1883</td>
<td>Brooklyn, NY, USA</td>
<td>486</td>
<td>Suspension, 6 years</td>
<td></td>
</tr>
<tr>
<td>1869</td>
<td>Niagara, Clifton (destroyed 1889)</td>
<td>410</td>
<td>Suspension, 14 years</td>
<td></td>
</tr>
<tr>
<td>1867/ 1856</td>
<td>Roebling/ Cincinnati, OH, USA (steel cables added 1899)</td>
<td>432</td>
<td>Suspension, 2 years</td>
<td></td>
</tr>
<tr>
<td>1858</td>
<td>Wheeling, WV, USA (rebuilt after collapse 1854, modified 1860, 1872)</td>
<td>308</td>
<td>Suspension, 5 years and 11 years</td>
<td></td>
</tr>
<tr>
<td>1834</td>
<td>Zaanstreek Bridges, Fribourg, Switzerland (Demolished in 1920s)</td>
<td>271</td>
<td>Suspension, 15 years</td>
<td></td>
</tr>
<tr>
<td>1826/ 1840</td>
<td>Menai, Wales UK, reconstructed 1940</td>
<td>176</td>
<td>Suspension, 8 years</td>
<td></td>
</tr>
<tr>
<td>1940</td>
<td>or 1374</td>
<td>137</td>
<td>Suspension, 400 years</td>
<td></td>
</tr>
</tbody>
</table>

Sources for table opposite, lower table:
- John H Stephens, The Guinness Book of Structures (1976); Eric Delony, Landmark American Bridges (1992) published by the American Society of Civil Engineers; Judith Dupré’s, (1997), and for up to date base sources various web pages including one related only to suspension bridges, to which is here added the two cantilever bridges that took the record away from suspension bridges between 1889 and 1929. Each suspension bridge was checked against the bridge website, a true suspension bridges, placed in date order. All bridges listed here were also checked against the Structurase website.
3.2.5
Bridges Now on the World Heritage List

The World Heritage List contains no single railway bridge or viaduct. There are four sites at which a road bridge is the principal focus of inscription, all of them much smaller than the Forth Bridge. These are the Mehmed Paša Sokolović Bridge of Višegrad, the Mostar Bridge, (both in Bosnia Herzegovina), the Iron Bridge at Ironbridge Gorge (UK) and the Vizcaya Bridge (Spain).

The Mehmed Paša Sokolović Bridge of Višegrad is a 16th-century stone bridge across the Drina River on 11 arches spanning 11-15m each, four of them rebuilt in 1952 after damage in both World Wars. It is long but similar to other late-medieval bridges and was important to Ottoman control of the Balkans.

The Mostar Bridge dates from the 16th century and was reconstructed after its deliberate destruction in 1994. Its reconstruction is a powerful symbol of reconciliation, and the criterion that gives it Outstanding Universal Value is (vii), representing the idea that it links communities.

The Iron Bridge, 1779, is a product of a different, proto-industrial, age, different design (mortised joints as if it were of timber), different materials (cast iron) and character (arched). It is a European first, a symbol of its age as much as the Forth Bridge is more than a century later. The World Heritage Site is an industrial landscape much larger than the small bridge that is its symbol.

The Vizcaya Bridge, 1893, is of steel and of just slightly later date to the Forth Bridge, but uses a totally different technology and design approach. Its (replaced) gondola carries light road traffic, not rail.

Vizcaya Bridge is 160m long and clears 45m above high tide. All but the towers were destroyed in 1937 during the Spanish Civil War, so the boom and suspension cables date from 1939-1941 and its fourth gondola was installed in 1998. It has witnessed many more changes than the Forth Bridge and is considerably smaller, but it is well-loved locally and is a fine structure.

The Vizcaya Bridge, the Hydraulic Lifts of the Canal du Centre in Belgium, and the Völklingen Ironworks in Germany are the only steel engineering structures that are single items on the World Heritage List.
3.2.6 Bridges Incorporated Within Urban World Heritage Sites

Bridges are at once so fundamental to people's engagement with their environment that it is not surprising that a number of World Heritage sites include bridges within their inscribed boundaries. Prominent examples include:

- Paris, all the bridges crossing the Seine, of stone, wrought iron and steel, within the centre. The Eiffel Tower is within that property too.
- St Petersburg: numerous small iron and stone bridges.
- Prague, Charles Bridge, stone-arched bridge, with statuary.
- Bath, Victoria suspension and Pulteney stone arched bridge.
- Old and New Towns of Edinburgh: Dean, George IV, Regent, North and South Bridges - all arched and all but North Bridge (steel, constructed 1894-7 by Sir William Arrol) are of stone
- Budapest Chain Bridge, rebuilt after war damage.
- Oporto, described below.

These bridges form part of the distinctive make-up of places that border rivers, but they are by no means the only distinguishing elements of those places that give Outstanding Universal Value.

Amongst the most important undamaged examples is at Oporto, Portugal, where the largest wrought-iron span in the world can be found in the form of the Ponte da Arruda, a wrought-iron suspension bridge built by Gustave Eiffel. Its design is similar to his Garabit Bridge, also wrought iron, built in France in 1883 with a span of 165m. The largest arched span in the material that preceded steel, wrought-iron, is therefore one of just one of the spans of the Forth Bridge, whose construction was simultaneously underway in the 1880s.

3.2.7 Bridges Within Canal and Mountain Railway World Heritage Sites

The heritage corridor concept was developed in America as a way of interpreting a linear landscape shaped by a road, railway or waterway. Four such landscapes are on the World Heritage List as mountain railways. Viaducts are characteristic elements in the Semmering and Rhetian railways (respectively in Austria, Switzerland/Italy) but all 16 at Semmering are of masonry or brick arches and so are the 42 bridges and viaducts at the Rhaetian Railway (the Albula/Bernina line) - many of them widened. The longest is 165m on multiple arches, a distance covered in a single bound by several cantilever bridges elsewhere. But Alpine engineers distrusted iron and steel.

In Darjeeling, India, the time taken to travel was of little concern so the line consists of loops and zig-zags rather than any sizeable bridges. The Semmering and Darjeeling lines are discussed in the ICOMOS/TICCIH study Railways as World Heritage Sites (1999) which addresses entire railway routes, not individual structures. While the topography of mountain railways may have presented construction challenges, no individual viaduct is singled out for its engineering prowess in the way that the Forth Bridge stands out.

Among the sections of canals on the World Heritage List -- Canal du Centre, Belgium, du Midi (France), Rideau (Canada) and Pontcysylte (UK) -- only this last has a monumental scale of aqueduct that carries forward the standard set by the ancient Roman aqueducts of Segovia (Spain), Pont du Gard (France), and Valens (Istanbul, Turkey), all world heritage listed in 1983. Conveying water meant a heavier dead load compared to the live loads carried by road and railway bridges, so there is a considerable amount of masonry, but less than is usual in an aqueduct than in a bridge.

Completed in 1835 in the trough and short arched spans at Pontcysylte Aqueduct are of cast iron, as Jessop and Telford's way of reducing the weight. It was not the first iron aqueduct or bridge, but it is uniquely one of a kind, as shares some of the pioneering values set in the case of steel by the Forth Bridge.

3.2.8 Large Bridges Currently on World Heritage Tentative Lists

One road bridge and two railway viaducts are on the tentative lists of other countries, but they do not match the unique qualities or scale of the Forth Bridge, and in fact one of them is already demolished:

- Puente de Occidente, over the Cauca River in Medellin, Colombia, is a wire-cable suspension bridge built in 1887-1885, strongly influenced by Brooklyn Bridge, USA, on which its engineer had worked. It has timber portal towers and a timber deck. It has a span of 291m or 2/3 of just one of the main spans of the Forth Bridge, and less than several earlier suspension bridges in North America.
- Malleco Viaduct, Chile, was built in France by Schneider and Co in 1886-8, and erected in Chile in 1889-90. The overall length of 347.5m divides into five equal spans of 69.5m each. One main span of the Forth Bridge could comfortably bridge all of this. The rails are at an impressive height of 102m above the bottom of a gorge, and the small cantilevers are more like trestles. In 2013 this holds 56th place in the league of world's highest rail bridges, but an increasing number of very high bridges are being built in China. Later diagonal reinforcements were inserted between the girder and the towers for the structure to bear the weight of modern locomotives.

- Yenisei River Railway Bridge, Krasnoyarsk, Russia, is 1,000m long, with six main spans each of 137m. ICOMOS favourably considered its merits in 2003, without a visit, but did not see a case for emergency inscription. The bridge was then demolished and replaced by the current bridge in 2007. Comparison of archival photographs reveals that the 1896-9 single-track bridge of six bowstring arches is now two parallel bridges with horizontal top chords.

The Trans-Siberian Railway as a whole is acknowledged to be an extraordinary achievement in adverse conditions and extremes of temperature, and was important in tying together the largest country in the world. As the bridge was replaced in 2007 it is not a realistic candidate for inscription and is likely to be removed from the tentative list when it is reviewed by Russia.
The values in the attributes table at 3.1:2 are here set against the bridges that might be compared beside the suggested UNESCO criteria that may be applicable at the Forth Bridge, so that like is compared with like.

In conclusion, it is apparent that long-span bridges are absent from the World Heritage list. No bridge currently on the World Heritage List or on any other state's Tentative List compares to the Forth Bridge. It is therefore safe to conclude that the Forth Bridge represents a class of monument which is not represented on the current list. It bridges a gap.

Values Set by the Forth Bridge

<table>
<thead>
<tr>
<th>Values Set by the Forth Bridge</th>
<th>Other Bridges that Might Compare</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Art of the possible shown by conquest of a natural obstacle</td>
<td>Golden Gate Bridge, USA</td>
</tr>
<tr>
<td>[] Engineering form triumphant over style</td>
<td>Royal Albert Bridge Saltash</td>
</tr>
<tr>
<td>[] Solidity, strength and security</td>
<td>Tay Bridge UK (as rebuilt)</td>
</tr>
<tr>
<td>[] Scientific awareness of climatic effects</td>
<td>Tay Bridge UK and subsequent bridges</td>
</tr>
<tr>
<td>[] Gigantic scale</td>
<td>Quebec one bigger single-span, but much smaller in total</td>
</tr>
<tr>
<td>[] Gateway</td>
<td>Golden Gate Bridge, USA</td>
</tr>
<tr>
<td>-</td>
<td>Sydney Harbour Bridge, Australia</td>
</tr>
<tr>
<td>-</td>
<td>Tower Bridge, London, UK</td>
</tr>
<tr>
<td>-</td>
<td>Victoria Falls Bridge, Zambia / Zimbabwe</td>
</tr>
<tr>
<td>[] Landmark dominating its setting from whatever viewpoint</td>
<td>Vizcaya Bridge (and other transporters bridges)</td>
</tr>
<tr>
<td>-</td>
<td>Newport, Milawa (Victoria, Australia)</td>
</tr>
<tr>
<td>-</td>
<td>Roya Bridge (as rebuilt)</td>
</tr>
<tr>
<td>-</td>
<td>World War I Canal Bridge, France</td>
</tr>
<tr>
<td>[] Human effort and sacrifice:</td>
<td>Railways Trans-Siberian (Russia)</td>
</tr>
<tr>
<td>-</td>
<td>Canadian Pacific (Canada)</td>
</tr>
<tr>
<td>-</td>
<td>Simmering (Austria)</td>
</tr>
<tr>
<td>-</td>
<td>Phasian (Swiss/Italy)</td>
</tr>
<tr>
<td>[] Heroic age of engineering</td>
<td>Quebec Bridge (EBR) lost in two disasters)</td>
</tr>
<tr>
<td>-</td>
<td>Workers on Eads and Brooklyn Bridges, USA, suffocated from Caisson disease leading to modern understanding of decompression sickness - 'the bends'</td>
</tr>
<tr>
<td>[] Linking communities, expanding opportunities for travel.</td>
<td>Mena, UK, long-span suspension bridge, 1826 (rebuilt)</td>
</tr>
<tr>
<td>-</td>
<td>Royal Albert, Tam, UK, lenticular, 1859</td>
</tr>
<tr>
<td>-</td>
<td>Eads Bridge, USA, 1874, first use of steel in a big arch bridge, Brooklyn Bridge, USA, 1883, first to use steel cables Pontcycyllte Aqueduct, UK, 1808</td>
</tr>
<tr>
<td>[] Commercial competition driving forward development (whereas rail infrastructure works in many other countries were state initiatives)</td>
<td>Ribble Viaduct (Lancashire, UK)</td>
</tr>
<tr>
<td>-</td>
<td>Tay Bridge UK</td>
</tr>
<tr>
<td>-</td>
<td>Iron Bridge UK</td>
</tr>
<tr>
<td>[] Reputation as a by-word for an enduring task</td>
<td>Nothing surpasses the perception of the end less task of painting the Forth Bridge</td>
</tr>
</tbody>
</table>

3.3 Proposed Statement of Outstanding Universal Value

a. Brief Synthesis

The Forth Bridge is a globally important triumph of engineering, at once structural and aesthetic.

b. Justification for Criteria Under Which Inscription is Proposed

Criterion (i): represents a masterpiece of human creative genius

The Forth Bridge is an aesthetic triumph in its avoidance of decoration and yet an achievement of tremendous grace for something so solid. Its steel-built cantilever design represents a unique level of new human creative genius in conquering a scale and depth of natural barrier that had never before been overcome by man.

c. Statement of Integrity:

The property fully includes all the attributes that express the Outstanding Universal Value of the Forth Bridge. It and its setting do not suffer from the adverse effects of development or neglect. It rises above all nearby development, sets a quality benchmark for other bridges at a greater distance, and its condition is good.

d. Statement of Authenticity:

The property has a high degree of authenticity, with very little change having been made to the structural performance or material fabric since it opened in 1890. This can be verified by means of a conservation programme, with minimal replacement of fabric, and it continues in use as a railway bridge connecting eastern Scotland, the purpose for which it was built.

e. Requirements for Protection and Management:

The property has the highest level of building designation, having been included in the statutory list of buildings of special architectural or historic interest at Category X on 18th June 1973. It is contained at each end by Conservation Areas, and by other designations affecting the shore and designed landscapes. Its immediate surroundings are therefore protected and managed. Maintenance is planned ahead through Network Rail's maintenance programme, monitored from the benchmark of the excellent condition this bridge now has. Processes are in place for consenting change to this listed building that affects its special interest, and for development affecting the property.

The management and protection arrangements are therefore robust enough to sustain the Outstanding Universal Value of the property. Protection is assured through listed building consent and planning processes that serve well to balance the evolving needs of operational infrastructure and the safeguarding of cultural value. Heritage impact assessment is a tool for managing change. Management relies on monitoring from a sound baseline, a steady programme of maintenance by the owner, attention to community concerns and collaborative pursuit by stakeholders of economic benefits and other opportunities derived from the bridge.

Specific long-term expectations related to key issues include maintenance of strong community support, broadening understanding in the context of world bridges, attention to developments within key views, risk management and inspiring others.

A Management Plan has been prepared by the partners who support this nomination, working together as the Forth Bridges Forum. This partnership is a Transport Scotland-led management forum, established to ensure that local stakeholders' interests remain at the core of the management of the Forth bridges. The Forth Bridges Forum has undertaken to work together in a strategic partnership for the purposes of promoting the Forth Bridges' protection, conservation, presentation and transmission to future generations.
4.a Present State of Conservation

This section reviews the physical condition of the property, any threats to it, and conservation measures against these threats. The base-line data or benchmarks used are recorded in Section 6, which covers monitoring.

Current Physical Condition

The Forth Bridge is in an outstanding state of conservation, especially when considering its age. The recently completed refurbishment of the bridge was very thorough and, within the foreseeable future, assures the site against risk from neglect or decay to its Outstanding Universal Value. There is no discernible threat to its continued use as an essential part of the national rail network, which is the best means to ensure its continued maintenance and high state of conservation.

Network Rail performs Mandatory Visual Inspections of the Structure. These are documented as written reports with a view to highlighting urgent issues. These are carried out from existing walkways adjacent to the track and the walkways immediately below track level in the Internal and Approach viaducts. These inspections (by eye and binoculars) are to some degree limited to everything that can be seen from these walkways but serve as a very good general health check. Effectively one sixth of the bridge is inspected each year.

The Condition of the Bridge in 1995: the UK Health and Safety Executive (HSE) then commissioned an independent assessment of the bridge using consultants Pell Frischmann. It determined the strength of the various members of the bridge by means of condition survey, hazard assessment and structural analysis, and found:

- The bridge was safe, in its current condition, to carry Railtrack’s present loading requirement.
- Although the bridge had been allowed to deteriorate, at that time the structural integrity of the bridge was not compromised;
- The assessed capacity of the bridge in its then current condition complied with modern standards of safe design of bridge structures;
- The existing maintenance regime required improvement if the deterioration of the bridge was to be arrested and potential structural problems in the future were to be avoided.

This gave the impetus for the comprehensive programme of refurbishment that followed and was completed by Network Rail in 2011. It shows how far the bridge has come thanks to that investment. To take as an example:

- The bridge’s bearings are original, have never been replaced and were deemed fit for purpose as part of the structural integrity calculations carried out in 1995 by Pell Frischmann for the Health and Safety Executive (HSE).
One of these had had a crack patch-repaired in 1934.

On-going maintenance of the bridge includes periodic checking of the bearings and in the event that serious problems develop, Network Rail would consider replacement as a solution. A “modern” greasing system has been introduced into the secondary bearings in the approach viaducts and suspended spans. The lubrication arrangement is made up of a series of “grease-o-matic” canisters that effectively feed the bearings with a low viscosity grease. These followed recommendations made in the HSE report in 1996, and was not deemed necessary in the principal bearings at the North and South Jubilee Towers.

Past Repairs: Other repairs are known to have taken place in the past, such as the strengthening of the deck trough that carries trains in 1919-24 and 1934 a patched repair. In the recent past all repairs have been carried out sympathetically in keeping with the bridge structure, using, for example, “modern rivets” or cup-head bolts incorporating a round head on the most visual of surfaces to mimic the original rivets used in the construction of the bridge. This technique is more often used in the repair of riveted structures than the reintroduction of hot riveting. That process died out in World War Two.

Fatigue: Wear and tear: The bridge is not now stretched to its limits. Fatigue was considered in the UK Health & Safety Executive (HSE) report in 1995: “…the results indicated that, in the context of modern train loading, only a small percentage of the estimated total endurance had been used up. Fatigue effects from temperature and wind loading were also considered but were not significant”.

In relation to heavy rail, the Forth Bridge and the rail network associated with rail loading were also considered but were not significant. Historically the Forth Bridge had been the principal path for coal trains serving the large thermal power station at Longannet, but the re-opening of the Stirling-Alloa- Kincardine railway line has greatly reduced this load. At its height, the overall freight traffic amounted to some 6,000 freight train journeys per annum, each outward train being up to 1,400 tonnes in weight – but very much less coming back because they usually returned empty. However, the bridge remains an important freight route (e.g. for pipes and cement) and can be called on at any time as the only diversionary route to its original clear view. The Management Plan will help to build on the achievements of the recent restoration works.

One such measure is for example, the recent removal by Network Rail of some unsightly cable troughs from the South face of the South Jubilee Tower, which has returned this granite elevation to its original clear view. The Management Plan will help to build on the achievements of the recent restoration works.

Conservation Measures:

The property is protected through the planning system by its designation as a Category ‘A’ Listed building. The draft Management Plan identifies actions to further protect and enhance the condition of the historic fabric.

One such measure is for example, the recent removal by Network Rail of some unsightly cable troughs from the South face of the South Jubilee Tower, which has returned this granite elevation to its original clear view. The Management Plan will help to build on the achievements of the recent restoration works.

Table collated from information in the Network Rail CARRS report (and see 6.6 Monitoring)

<table>
<thead>
<tr>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Arches 3 Span Masonry Arch Viaduct</td>
<td>Constructed in granite. Arches noted to be in good overall condition with no notable defects reported for many years. Widespread leaking and efflorescence reported in addition to vegetation ingress issues.</td>
</tr>
<tr>
<td>North Approach Viaduct</td>
<td>Constructed in early steel, Metallic 5-spans viaduct, coated in old 5-coat Alkyd system throughout between 1993 and 1997. Table and therefore poorest paint on the bridge but still serviceable. Envisage need to commence repainting in approximately 5 years time. Systematic attention required to contact points during annual maintenance contract. Minor non-urgent steelwork repairs envisaged to be carried out along with contact points. As this travels over dry land in Fifes, and is relatively easily accessed, this has what is now the oldest paint. Soft is early in the programme for attention.</td>
</tr>
<tr>
<td>North Tower; Constructed of Granite</td>
<td>Torn batten arch over the running lines, internal spiral staircase in relatively poor condition, though non-essential. Maintenance of stairs to be programmed in within the next 5 years. No repainting envisaged within next 15 years. Systematic attention to contact points.</td>
</tr>
<tr>
<td>North Queensferry, Internal Viaduct</td>
<td>All elements coated in glass-flake epoxy system with exception of bays 5 and 6. North Queensferry internal viaduct. Glass-flake systems applied during 1997 to 2011. Alkyd system applied 1996 to 1997. Repainting may be expected to Alkyd system areas within 5 to 10 years. No repainting envisaged to glass-flake areas within 15 to 20 years. Systematic attention required to contact points during annual maintenance contract. Minor non-urgent steelwork repairs envisaged to be carried out along with contact points.</td>
</tr>
<tr>
<td>North Queensferry Pier and Cantilever</td>
<td>All elements coated in glass-flake epoxy system except Fife North “C” Bracings, glass-flake systems applied during 1997 to 2011. Alkyd system applied 1996 to 1997. No repainting envisaged to glass-flake areas for 10 to 15 years. Possible need to repaint areas of Alkyd coatings areas within 5 to 10 years. Systematic attention required to contact points during annual maintenance contract. Minor non-urgent steelwork repairs envisaged to be carried out along with contact points.</td>
</tr>
<tr>
<td>North Queensferry Pier and Cantilever</td>
<td>All elements coated in epoxy glass-flake main coat system during 2005 and 2011. No repainting envisaged within the next 15 years. Systematic attention required to contact points during annual maintenance contract. Minor non-urgent steelwork repairs envisaged to be carried out along with contact points.</td>
</tr>
<tr>
<td>North Queensferry Pier and Cantilever</td>
<td>All elements coated in epoxy glass-flake main coat system between 2005 and 2011. No repainting envisaged within the next 15 years. Systematic attention required to contact points during annual maintenance contract. Minor non-urgent steelwork repairs envisaged to be carried out along with contact points.</td>
</tr>
<tr>
<td>North Queensferry Pier and Cantilever</td>
<td>All elements coated in epoxy glass-flake main coat system between 2005 and 2011. No repainting envisaged within the next 15 years. Systematic attention required to contact points during annual maintenance contract. Minor non-urgent steelwork repairs envisaged to be carried out along with contact points.</td>
</tr>
</tbody>
</table>

In summary, general wear and tear has little significant impact on the bridge. Regular maintenance of the Railway itself, along with a routine care and maintenance regime for the structure addresses any items of general wear and tear. Replacement of worn components is generally limited to the rails themselves and to the embedded timber baulks on which they sit. The timbers in the troughs absorb some of the impact energy of the trains and spread the load.
4.b Factors Affecting the Property

Members of the Steering Group have reviewed the issues potentially affecting the property under the following headings, which are described in more detail in the Management Plan:

- Development pressures affecting the property
- Environmental pressures
- Natural disasters and risk preparedness
- Responsible Visitor Access and Education

Potential Future Alterations to the Property

As an operational structure, there is little in the way of development that is possible within the property itself. However, there are two potential exceptions:

- Electrification: the railway is currently not electrified, but it is possible that future investment in the line might raise the question of electrification. It is unlikely, given the immense scale of the bridge and the comparatively small size of the internal viaduct, that there would be significant visual impact on external views to wiring within the cantilevers. The wires would somehow have to thread through the cross spars, raising technical challenges. Where the wires would stand out would be on the approach viaducts.

- For comparison, were such proposals to arise, it would be worth examining the relatively minor impact of the installation of overhead wires for a new metro system on the Luiz I Bridge in the heart of the Historic Centre of Oporto World Heritage site in 2005.

Setting

It could be argued that almost anything that is built within the setting of the bridge would be dwarfed by it, and it is the contrast in scale between ordinary buildings and the bridge which is an attribute of its Outstanding Universal Value. Historic Scotland has conducted a viewpoint analysis to identify those places from which valuable views can be enjoyed. This will inform planning decisions in the surrounding areas, and on other practical management issues such as the control of vegetation (see viewpoints study at 5.c.8).

Any new development that may impact on setting will be tested through protective mechanisms set out in the relevant local development plan. The Outstanding Universal Value of the bridge, which includes its setting, will...
be a material consideration in determination of planning applications by the local authority or by Scottish Ministers, as the case may be. As it is a listed building both planning authorities “shall have special regard to the desirability of preserving the building, its setting or any features of special architectural or historic interest which it possesses.” - Planning (Listed Buildings and Conservation Areas) (Scotland) Act (1997). In addition, Scottish Ministers must be consulted on any development which affects a category A listed building or its setting - Schedule 5, Town and Country Planning (Development Management Procedure) (Scotland) Regulations 2013.

The springing point at each end of the bridge is protected by Conservation Area designation: North Queensferry Conservation Area and Queensferry Conservation Area. These link into the relevant local development plans. Any proposed development must pass the test that it either enhances or preserves the special character of the area, as is set out in the respective Conservation Area Appraisals. A harmful development not preserving or enhancing that character would then be refused permission by the local authority. An example of development within a conservation area is Deep Sea World in North Queensferry Conservation Area.

The development of Carlingnose Battery, first built to protect the bridge and approaches to Rosyth Naval Dockyard, offers the case of a development just outside a conservation area. The battery is a listed building, having previously been a Scheduled monument (a designation applicable to uninhabited/unused assets). Now, houses neatly fit into the fortifications, parts of which are occupied as studios. At a greater distance from the conservation areas, some development will occur that might be quite substantial, such as at Rosyth dockyard on the north side, and the Dakota Hotel on the south side. The Forth Road Bridge (1964) itself demonstrates continued function of this location as a crossing point, has alleviated traffic queues in the historic town parts of both Queensferrys and makes a complimentary group with the Rail Bridge. It too is now listed category A and had the largest span in Europe for two years (until the Tagus Bridge, 1966). The construction of the new ‘Queensferry Crossing’, a road bridge which runs from Port Edgar to St Margaret’s, to the other side of the Forth Road Bridge from the property, is scheduled to be completed in 2016. The addition of a new crossing should not diminish the Outstanding Universal Value of the Forth Bridge. The new crossing was designed in full consideration of the impact it will have on existing cultural assets, including the Forth Bridge. If anything, the addition of a new crossing can be used as a positive force for the area and will add to the setting of the property, allowing for comparison and promotion of three centuries-worth of bridges spanning the Forth Estuary, each being good or outstanding exemplars of contemporary long-span bridge engineering: cantilever, suspension and cable-stay. “Three bridges from three centuries” is a strapline adopted by the Forth Bridges Forum for the crossings at this headland. As a collection of long-span bridges, the group possesses qualities combined that are more than the sum of the individual parts.

4.b (ii) Environmental Pressures

No severe environmental pressures are anticipated to harm the bridge per se.

Sea Levels: any increases brought about by Climate Change are unlikely to affect the structure as it was built to stand in water and to cope with climatic weather extremes. Defences against rising sea level may of course impact upon its immediate setting, either immersing the shore to a greater extent than now, or defending settlements against inundation.

Wind Loading: The calculated wind loading was 2.8kN/m² which equates to 148 MPH or 66m/sec. This value is high by modern standards, and therefore well within safe parameters.

Temperature Variation: the design intention was to allow the bridge to expand and contract freely, so the expansion joints and bearings were designed to allow for 70°F (21.1°C), temperature change. There is a special detail at the connection of the rails that allows for this. Although the bearings did not have free movement the HSE estimated the thermal stresses at the most critical member under worst-case conditions and found the stresses to be not significant.

Vegetation Management: Network Rail reports that there are no significant issues regarding invasive plants at the bridge – only minor issues are reported relating to the masonry of the approach viaducts. Beyond the property itself, the Viewpoint Study has identified several key viewpoints where there is a need to monitor and where it is necessary cut back vegetation to open up significant views. For example, the view from the new Contact and Education Centre is now much improved by judicious pruning of trees in front of it in 2013. It is important that trees and shrubs are managed against clear objectives for the protection and presentation of the bridge and that these be balanced with bio-diversity objectives.

Environmental Assessment (Scotland) Act 2005

Under section 8(1) of the above Act, in consultation with the Scottish Environment Protection Agency and Scottish Natural Heritage, Historic Scotland has formally determined that the Forth Bridge – World Heritage Site Nomination & Management Plan is unlikely to have significant environmental effects and therefore that an environmental assessment is not required. Copies of this determination are available from: Historic Scotland, Longmore House, Salisbury Place, Edinburgh, EH9 1SH or www.historic-scotland.gov.uk/seadeterminations.
4.b (iii) Natural Disasters and Risk Preparedness

Disaster Risk Management (DRM) will be addressed through the Management Plan. The Forth Estuary is not within a seismic zone. The materials from which the bridge is built are not readily combustible, so natural risks are low. The main consideration in its construction was wind pressure. In the light of events at the Tay Bridge, allowance for wind was very conservative - see 4.b (ii).

Man-made risks may be higher than natural risks. The most significant risk is therefore likely to be some sort of collision or derailment on the bridge itself, as emergency plans are in place should such an event occur. Collision by shipping is mitigated against by navigation lights fixed to the suspended spans and to the pier of the Bouch Bridge, which has a continued utility as a means of warding off shipping from Inchgarvie Rock and the lower part of the bridge cantilever. Aircraft safety in the UK is regulated by the Civil Aviation Authority, which has strict measures in place to prevent aircraft collision. Low Flying Rule 5 (3) b states: Except with the written permission of the Civil Aviation Authority, an aircraft shall not be flown closer than 500 feet (152.4 m) to any person, vessel, vehicle or structure*. Aircraft are warned away by the lights on the taller pylons of the Forth Road Bridge as well as identification of the three peaks of the bridge in maps of all obstacles over 300 feet (100 m) tall, in United Kingdom Aeronautical Information Publications in the Enroute (ENR) section ENR 5.4.

The entry prepared for the Forth Bridge by Fife Fire and Rescue Service in 2005 for the Historic Buildings Fire Database makes specific notes about railway procedures and that there is no immediate water supply available. See table above for an extract.

An oil pipeline runs from Hound Point, 2 km west of the bridge, in the bed of the Forth as far as Grangemouth and also to a depot south of the A90, there hidden by an earthen bund mound formed from shale oil waste. Provisions are in place in case of accident here, the main concern being for possible impact on natural habitat and human life.

A whinstone quarry has been in occasional operation on the north side of the headland, evidence of the longstanding use of volcanic basalt from North Queensferry over many years, not least for use in construction of the Forth Bridge itself. Its expansion to the south is circumscribed by the position of a public road, and houses are between it and the bridge, so it is not likely ever to come into view. Older quarries on the south side of the headland now form a valuable nature reserve, managed by Scottish Wildlife Trust, and do not harm impressions of the property.

Historic Buildings Fire Database: Building Salvage Priorities

<table>
<thead>
<tr>
<th>Cultural Significance</th>
<th>Fire Vulnerability</th>
<th>Vulnerability to Fire Fighting Procedures</th>
<th>Operational Considerations</th>
<th>Fixed Firefighting/Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Negligible fire risk</td>
<td>No immediate water supply available, 1200m from hydrant to centre of bridge (55 hose lengths). Closed water relay to scene of incident using LPPs.</td>
</tr>
</tbody>
</table>

An opportunity will arise to make more of the Forth Road Bridge as regular road traffic is transferred in 2017 from it to the Queensferry Crossing. It can also be used as a stop-over point for passengers arriving by rail from Central Scotland, although the walk from the train station to the bridge is long and not used by many passengers. The carrying capacity of the bridge in terms of passenger numbers is able to expand somewhat as the volume of goods trains has been reduced by the routing of coal traffic via Aloata. Other factors could be an influence: the length of trains for example. It is not expected that inscription would substantially influence decisions as to whether to travel by train over long distances, but it should be possible to monitor ticket sales to the adjacent Dalmeny and North Queensferry stations as being in part influenced by a desire to experience the bridge. The absolute number of people who might pause to appreciate the bridge can never be established because the viewpoints are wide spread and are not monitored. Public consultation over the summer of 2013 did establish that there were concerns in the bridgehead communities that increasing visitor numbers needed to be managed. North Queensferry has limited road access, due to its position on a headland, but appears able to absorb 100,000 visitors per year to Deep Sea World. In Queensferry car parking can be difficult on certain days, especially when cruise liners take over the car park near Hawes Pier for use by coaches taking their passengers elsewhere in Scotland. These issues require local management.

The Forth Bridges Forum is a Transport Scotland-led management Forum, established to ensure that local stakeholders’ interests remain at the core of the management and maintenance of the Forth bridges. In addition, it provides a mechanism for the collective promotion of the Queensferry Crossing, the Forth Road Bridge (FRB) and the Forth Bridge. The Queensferry Crossing (known in its early stages as the Forth Replacement Crossing) is a second road crossing currently under construction on the far (west) side of the adjacent Forth Road Bridge.

The Forth Bridges Forum, through its sub-group, the Forth Bridge World Heritage Nomination Steering Group, is facilitating, resourcing and promoting this World Heritage nomination. It will seek to...
ensure that the operation of the new crossing and adaptation of the existing road bridge serve the interests of local communities, and the needs of The Forth Bridge.

Presentation – Visitor Management, Community and Education

Presentation of the Outstanding Universal Value is a key aspiration for all managing a World Heritage Site. It is a priority for the Forth Bridges Forum. Bodies on its Forth Bridge World Heritage Nomination Steering Group are already exploring potential activities associated with enhancing promotion, visitor management, community participation and education, both for the bridge and for the wider area. The Management Plan addresses opportunities to strengthen this work and to deliver it in a coordinated manner.

The Development of Visitor Access on the Bridge

The majority of people experience the bridge as passengers, as residents or as passers-by in the vicinity. Interpretation is provided through panels in both towns, through memorials and in Queensferry Museum, the recently opened Contact and Education Centre, through literature and online, and is planned to be provided in North Queensferry station.

Nothing, however, can quite match the impact of being on the bridge to personally capture its immense scale and extraordinary geometry. Some privileged guests have taken the opportunity to do this while access lifts are still in place. Other people have raised money for various charities, such as the Chest Heart and Stroke Association, by abseiling from the south viaduct, in cooperation with Network Rail. These have paved the way for what has recently been put into the public domain.

Network Rail announced in September 2013 that it is investigating the possibility of providing some sort of safe public pedestrian access to the bridge. In this it may follow the example offered by Story Bridge in Brisbane and by Sydney Harbour Bridge, both in Australia, where organised groups are clipped to the bridge and led around it in tours.

Providing some sort of visitor access presents many challenges on such a busy operational structure, and would be absolutely bound by health and safety restrictions and requirements. Equally, were a scheme to be further developed, it would be essential that it did not in any way detract from the authenticity and integrity of the bridge.

Access to and appreciation of heritage is a major priority for most World Heritage Sites, where practicable, and where not harming the integrity and fabric of the property. Therefore, members of the Forth Bridge World Heritage Nomination Steering Group are pleased at the prospect of some sort of potential visitor access, and should the opportunity arise, will work together towards realising this vision.

However, even if no more pedestrian access were given than is now possible, the bridge can be very well appreciated by passengers and from points off the bridge. Virtual access may be made possible by the creation of a 3D model using data gathered using the latest laser scanning technologies, and this will benefit those who, by reason of physical fitness, or distance from the bridge, could not expect to climb it.

4.b (v) Number of Inhabitants Within the Nominated Property and the Buffer Zone

0 (zero). There are no inhabitants in the property itself. There is no set buffer zone for purposes of protecting the setting, because existing designations are adequate for the protection of views close-to and in the immediate environs of the bridge.

Approximately 10,400 people live in the bridgehead zones, the area adjacent to the bridge comprising Queensferry and North Queensferry at its south and north ends respectively. Of these around 1,100 are in North Queensferry and 9,300 in South Queensferry.

Benchmark source: The UK census occurs every ten years and gives a long-term perspective on the growth or decline of communities. The 2011 Census results give a population of 9,300 for South Queensferry, an apparent reduction from 2001 (9,550 in Queensferry) but the definition of the base population has changed slightly between censuses, e.g. whether population is ‘present’ on census night or ‘normally resident’, and whether students are allocated to term-time or parental addresses. The figures include Dalmeny as part of South Queensferry.

In North Queensferry the population has gone up very slightly (by 52) since 2001. The population compared to Scotland as a whole is relatively young. A higher proportion is below 16 compared to the national average, and in South Queensferry in particular there are more people of working age, and fewer people of pensionable age.

North Queensferry shows a higher proportion of persons born outside Scotland (23%), to the national average of 13%. That ratio is less marked in South Queensferry.

Neither figure gives ground for worry.
“Scotland, like all countries in the developed world, has in place legislation and systems to identify and record its historic environment, and legislation and regulation to protect important monuments, buildings, landscapes and areas and to control what happens to them. Scottish Ministers are committed to protecting Scotland’s historic environment and to ensuring that effective legal and administrative systems are in place and maintained, to identify, record, conserve and enhance it in the national interest for present and future generations.”

Scottish Historic Environment Policy (SHEP 1.24)
Network Rail is the owner of the bridge and responsible for its on-going day-to-day maintenance and management. To facilitate that management it also owns land beneath and beside the bridge, as indicated here in pink: (right) Queensferry, showing the south masonry arch over a footpath, and (below) the Fife Cantilever at North Queensferry showing the Battery Piers and land acquired for the construction phase. The land claimed from the sea in that area is shown white and access rights granted to a new house are hatched red and green. (Source Network Rail, 26.06.2013. Reproduced from the Ordnance Survey Map with permission of the controller of Her Majesty’s Stationery Office. Crown Copyright. Licence No: 0100040692)
All necessary measures for the protection of the bridge and its setting are in place. The designations specific to the bridge are listed here, and the implications in practice for both the bridge and its setting are set out at 5.c.

The Forth Bridge is listed at category A as a building of special architectural or historic interest in:

- City of Edinburgh Council, Edinburgh Burgh HBNUM: 40370 Item No: 30 OF
- Fife Council, Inverkeithing Parish HBNUM 9977 Item No: 6

Planning authorities “shall have special regard to the desirability of preserving the building, its setting or any features of special architectural or historic interest which it possesses.” This is fundamental to the legislation set out in the:

This replaced the previous legislation,

- The Town and Country Planning (Scotland) Act 1947, under which the bridge was first listed http://www.legislation.gov.uk/ukpga/Geo6/10-11/53/contents and the

The date of listing is given as 18th June 1973. This is the date at which previously-compiled lists were given statutory effect on implementation of The Town and Country Planning (Scotland) Act (1972). It happens that bridges sometimes span between more than one local authority, or even country, and accordingly must be listed in both places. The listing designation specifically includes the pier of the first attempt at a Forth Bridge, that now carries a light.

Scottish Ministers must be consulted on any development which affects a category A listed building or its setting. Schedule 5, Town and Country Planning (Development Management Procedure) (Scotland) Regulations 2013.

While the setting, as defined in S.c.8 and S.c.9, therefore has legal protection, there is no designated buffer zone because the bridge is conspicuous at enormous distances. Yet there are in place around the ends of the bridge areas designated for cultural, natural and other planning reasons. Each end of the bridge lies in Conservation Areas designated under the same legislation of 1972 and 1997. Each was first designated in the 1970s and benefit from character appraisals that amended their boundaries to bring in all of the bridge where it crosses land. They are:

- Queensferry Conservation Area, City of Edinburgh and
- North Queensferry Conservation Area, Fife, details of which are included in S.c.3 below.

All of North Queensferry is included in the Inventory of Historic Battlefields, as Inverkeithing Battlefield. See S.c.7 and http://www.historic-scotland.gov.uk/Battle_of_Inverkeithing_summary.pdf

The intertidal shore line below the bridge also benefits from natural designations of the same area, for different reasons:

- Ramsar site (Wetland of International Importance designated under the Ramsar Convention, 1971)
- Natura sites (Special Protection Areas and Special Areas of Conservation)
- Sites of Special Scientific Interest (SSSI).

Conservation in the UK is achieved by proactive measures alongside steps to control change in both cultural and natural heritage spheres. Means of implementing protective measures, and also steps that can enhance setting include:

- Local development plans
- Strategic Environmental Assessment (SEA) scoping studies for development within the setting (the SEA scoping study for nomination of the Forth Bridge as a World Heritage Site is an example of this)
- Property Management Plan: from Network Rail CARRS strategy
- Partnership Management Agreement for routine handling of listed building consent cases at the bridge: Fife and City of Edinburgh Councils, Network Rail and Historic Scotland
- Conservation area appraisals to guide enhancement and development
- Natural heritage measures for monitoring and improving habitat

A Summary Chronology of Consent Cases for the Bridge:

1987 - Dry grit blasting of the portals, conditional on making good the pointing.
1988 - New compound for rescue boat.
1989 - Stone cleaning, picnic / viewing area / environmental improvement at North Queensferry.
1990 - British Rail Property Board seeks consent for floodlighting. Historic Scotland suggests welding or resin gluing instead of drilling through the original struts in case they prove temporary.
1999 - Listed Building Consent Protective Designation granted for different floodlighting scheme designed under the same legislation of 1972 and 1997. Each was first designated in the 1970s and benefit from character appraisals that amended their boundaries to bring in all of the bridge where it crosses land. They are:

- Queensferry Conservation Area, City of Edinburgh and
- North Queensferry Conservation Area, Fife, details of which are included in S.c.3 below.

All of North Queensferry is included in the Inventory of Historic Battlefields, as Inverkeithing Battlefield. See S.c.7 and http://www.historic-scotland.gov.uk/Battle_of_Inverkeithing_summary.pdf

The continuing management regime and the wealth of records, photographs and detailed information about the bridge ensures that much of the material required to support the Management Plan is readily available.

The Forth Bridge is listed at Category A. This gives it the highest level of statutory protection for a building that is in use, and any change that affects the special interest of the bridge requires listed building consent. This has to be obtained from both City of Edinburgh and Fife Councils, with advice in certain circumstances from Historic Scotland on behalf of Scottish Ministers.

Listed Building Consent is a process for permitting change, and for documenting those changes that could affect the special interest of the bridge.

5.c Means of Implementing Protective Measures

The Forth Bridge is listed at Category A. This gives it the highest level of statutory protection for a building that is in use, and any change that affects the special interest of the bridge requires listed building consent. This has to be obtained from both City of Edinburgh and Fife Councils, with advice in certain circumstances from Historic Scotland on behalf of Scottish Ministers.

Listed Building Consent is a process for permitting change, and for documenting those changes that could affect the special interest of the bridge.
Where works apply to all of the bridge, or where what is done at one end will have implications for the other end, this must be obtained from both Fife and City of Edinburgh Councils, with advice as appropriate from Historic Scotland, for Scottish Ministers. Ultimately there is the possibility of “call-in” for determination of an application by Scottish Ministers, but the policy is generally to have decision making at the closest appropriate level. A Partnership Management Agreement (PMA) is in preparation between the relevant parties (Fife and City of Edinburgh Councils, Historic Scotland and Network Rail). It sets out to clarify the handling of listed building consent processes; what level of interaction is required for works that go beyond regular maintenance and might impact upon the special interest of the bridge. The operation of a Partnership Management Agreement specifically drawn up for the bridge rules out the call-in by Scottish Ministers of decisions on most types of work.

Under the Town and Country Planning (Development Management Procedure) (Scotland) Regulations 2008, planning authorities are required to consult Historic Scotland on development proposals they consider to affect the setting of a Category A listed building. This includes not only the Forth Bridge and the Forth Road Bridge, but also a number of buildings around about, like Hopetoun House. Therefore there are a number of opportunities to consider the impact of development upon the setting of heritage assets. In addition to the Forth Bridge itself, in the adjacent bridgehead zones, there are a number of historic buildings in the area close to the bridge. Those that relate to crossings of the Forth or which have some historic relationship to the bridge are included in the table below.

There are three categories of listing, although these do not impact upon requirements for applicants in considering change. They are:

A - National/International importance
B - Regional importance
C - Locally valuable and altered buildings

<table>
<thead>
<tr>
<th>Name of Building</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalmeny Station, 1890 (but not earlier one)</td>
<td>Category B</td>
</tr>
<tr>
<td>Hawes (New Hall) Pier and Leading Light, 1810</td>
<td>Category B</td>
</tr>
<tr>
<td>Queensferry Harbour 16th century/1809-19</td>
<td>Category B</td>
</tr>
<tr>
<td>Bridge House, 22-23 Newhall Rd, 1882</td>
<td>Category C</td>
</tr>
<tr>
<td>Hawes Garage, 19th century</td>
<td>Category C</td>
</tr>
<tr>
<td>Hawes Inn, 1838/1893</td>
<td>Category B</td>
</tr>
</tbody>
</table>

And not listed, but relevant to the building of the bridge, crossings and defences of the Forth:

- 1-16 Rosshall Terrace, Dalmeny Station, c.1883-86. Two brick-built terraces of company housing built for key members of the bridge construction workforce, now in private ownership subjected to many cosmetic alterations. The single-storey terrace running northwards from these post-dates construction of the bridge. Protected by on-going occupation.
- Long Craig Pier, 1812, an intact ferry pier, like Town Pier and Hawes, built because the sail-driven ferries could land at various points on the coast. This forms an edge to the Dalmeny Designed Landscape, Edinburgh (with Creative Photographers Meetup group capturing the Forth Bridge at sunset).
- Carlingnose Submarine Mining Station Pier 1901-2, Fife, is valued in natural heritage terms as a bird roost, part of the Scottish Wildlife Trust Carlingnose Reserve, its primary function was in protecting the narrow part of the Forth by laying mines.

All images © Crown Copyright, Historic Scotland (2013)

5.c.2 Scheduled Monuments

The property contains no scheduled monument. This designation applies to assets of national importance that are not expected to be put into use. Within the immediate setting there lies respectively in Fife and the City of Edinburgh:

- The Chapel of St James, patron saint of Travellers/Pilgrims, an essential place of worship for all ferry travellers in the middle ages.
- The Island of Inchgarvie is a scheduled, and specifically excludes the Forth Bridge. The central cantilever tower of the bridge stands on rock that is near the island, but is not connected above the low waterline.

5.c.3 Conservation Areas

The springing point at each end of the bridge is protected by Conservation Area designation: North Queensferry Conservation Area and Queensferry Conservation Area. These cultural designations link into the relevant local development plans. Any development there must enhance or preserve the special character of the area, as is set out in their respective, and up to date, conservation area appraisals. Trees and buildings are protected from felling, lopping or demolition without the appropriate permissions. Certain works to buildings that are within conservation areas may need planning permission.

North Queensferry Conservation Area

Area includes the ground carrying the entire approach viaduct, north portal and all of the Fife Tower. The land here is bounded by the masonry blocks of the East and West Balloons, topped by tubular iron railings. The CA includes the Station and part of the escarpment that is at track level between the road and rail bridges (the rest of which at Northcliff is covered by a Tree Preservation Order). The conservation area boundary was amended to cover this larger area in 2005 and the Character Appraisal of the conservation area went through public consultation in 2011.

Extracts from Conservation Area Appraisal:

- The lower village is effectively split in two by the piers of the Forth Bridge which dominate the setting of this part of the village.

Upper Village:
- Many properties enjoy spectacular views across the West Bay towards the Forth Rail and Road Bridges and beyond.

Development and Enhancement Opportunities:
- An important consideration for inclusion in the [World Heritage list is that the relevant authorities fully endorse the site being given this status. In the case of the Forth Rail Bridge, those authorities are Fife and Edinburgh City Councils as local authorities, both of which have formally agreed to support the inclusion of the Forth Rail Bridge in the List.

Queensferry Conservation Area

The Conservation Area includes the masonry arches and the first seven spans of the property, now in private ownership. The land here is bounded by the masonry blocks of the East and West Balloons, topped by tubular iron railings. The CA includes the Station and part of the escarpment that is at track level between the road and rail bridges (the rest of which at Northcliff is covered by a Tree Preservation Order). The conservation area boundary was amended to cover this larger area in 2005 and the Character Appraisal of the conservation area went through public consultation in 2011.

Extracts from Conservation Area Appraisal:

- The lower village is effectively split in two by the piers of the Forth Bridge which dominate the setting of this part of the village.

Upper Village:
- Many properties enjoy spectacular views across the West Bay towards the Forth Rail and Road Bridges and beyond.

Development and Enhancement Opportunities:
- An important consideration for inclusion in the [World Heritage list is that the relevant authorities fully endorse the site being given this status. In the case of the Forth Rail Bridge, those authorities are Fife and Edinburgh City Councils as local authorities, both of which have formally agreed to support the inclusion of the Forth Rail Bridge in the List.

5.c.3 Conservation Areas

The property contains no scheduled monument. This designation applies to assets of national importance that are not expected to be put into use. Within the immediate setting there lies respectively in Fife and the City of Edinburgh:

- The Chapel of St James, patron saint of Travellers/Pilgrims, an essential place of worship for all ferry travellers in the middle ages.
- The Island of Inchgarvie is a scheduled, and specifically excludes the Forth Bridge. The central cantilever tower of the bridge stands on rock that is near the island, but is not connected above the low waterline.
Passing down the approach roads and along the High Street, there are significant views to the two landmarks of the Bridges, category A listed buildings which need to be maintained and enhanced. Both of these structures are of interest in themselves but the juxtaposition of the two define a key part of the unique sense of place of Queensferry.

Statement of Essential Character:
• A unique setting within the Firth framed by the Forth Rail and Road Bridges
• Open views ‘down’ from the rail and road bridges which emphasise the importance of the roadside.

Dalmeny Conservation Area
appraisal emphasises the rural character of this village conservation area, the landmark buildings, predominant vernacular building forms and materials, and the mainly residential character. The Forth Bridge is visible in gaps between houses from the green and from the road running northwards. The Conservation Area Character Appraisal was approved by City of Edinburgh Council in 2000.

A tree preservation order (TPO) has an equal effect on felling and lopping of trees, even where not actually in a Conservation Area. This applies in respect of tree cover at the escarpment that is at track level between the road and rail bridges at Northcliff, North Queensferry.

5.c.4 World Heritage Sites

5.c.5 Gardens and Designed Landscapes

The property is not within a designed Garden or Designed Landscape, but there are some nearby that help to protect views from and towards the property. Those referred to here are all included in the Inventory of Gardens and Designed Landscapes compiled for Scottish Ministers by Historic Scotland.

These are particularly evident in the more open landscape on the south side of the River Forth. That part of Dalmeny estate that stretches from the Forth Bridge to Mons Hill and Hound Point is so protective of the landscape setting as to be considered part of the bridgehead zone to the Forth Bridge. To the other side of Queensferry, Hopetoun House has on its axis a direct view of the Forth Bridge, and also views of it in elevation through the Forth Road Bridge from the shore line of that estate, Society Point to Abercorn. The Monument at The Binns, a property of the National Trust for Scotland, and has a similar but more elevated view across Hopetoun. Inland is Dundas Castle which mainly looks south and east but also from a low ridge to the north and both bridges. The route taken by the M90 towards the Forth Bridge and soon the Forth Replacement Crossing intervenes but the top towers of the Forth Bridge are still in view.

The wider landscape in Fife north and east of the bridge and beyond its bridgehead zone includes estates like Fordell Castle, Pittencrieff and Donibristle (a remaining part of which is the inventory entry St Colme) that look onto the Forth. The foregrounds of these key viewpoints benefit from Inventory designation. It is not felt necessary to regard these as being in the bridgehead zone because that would also embrace a wide expanse of sea and some intervening recent development (low-lying Rosyth Garden suburb, Inverkeithing and Dalgety Bay suburbia) that is not particularly designated.

Implications: Under the Town and Country Planning (Development Management Procedure) (Scotland) Regulations 2008, planning authorities are required to consult Historic Scotland on development proposals considered to affect an Inventory Garden or Designed Landscape. This applies only to developments that require planning permission, and is a material consideration but not a prohibition on development. Developments within designed landscapes will be considered in terms of their impact on that designated landscape, and only rarely will impact on the Outstanding Universal Value of a World Heritage Site beyond those boundaries.

The gardens and designed landscapes listed and mapped here predate the construction of the Forth Bridge, excepting Pittencrieff Park (1903). The focus of the Inventory designation is the conservation of the landscape within the park, but views to and from that landscape will be a consideration, according to the weighting of the values in the Statement of Significance. Thus Dalmeny designed landscape provides the setting for category A listed buildings and so has outstanding architectural value, and is of outstanding ‘scenic significance as it can be viewed from the Firth of Forth, the Forth Bridges and the south coast of Fife as well as being significant from the adjacent locality.

Dundas Castle There are long-distance views over the parkland to the Firth of Forth and views northwards out to the Forth Bridges.

Hopetoun House Hopetoun House was sited facing due east. An Avenue extending east from the house was described on the layout plan by William Adam as ‘carrying your eye over two miles of the River Forth to the island and ruins of Inchgarvie and from thence forward along the River 12 miles or more to North Berwick Law, being a high Mount in form of a super bauf which terminates the Avenue’. This designed view has been interrupted by the road and rail bridges across the Forth.

House of The Binns “Panoramic Views to the bridges of the Firth” from Monument over Hopetoun to all of the bridge.

Pittencrieff Park Views can be obtained southwards to the Forth Bridge Road and the Lothian Hills.

Fordell Castle From the site of Fordell House (demolished 1962) there are expansive views south over open parkland towards Dalgety Bay and the Firth of Forth.

St Colme St Colme is set on elevated ground overlooking Barnhill Bay, with extensive views over the Firth of Forth to Edinburgh and the Lothian coast. The eastern approach from Aberdour allows uninterrupted views over the Firth of Forth. Along the remainder of the old east drive to Donibristle House there are panoramic views over the Firth of Forth to the Lothians and towards Donibristle House. From the site of the old summerhouse in Temple Plantation there is a panoramic view over the Forth. Perimeter tree belts enclose the landscape to the north.

Reference http://www.historic-scotland.gov.uk/index/heritage/gardens.htm

Those contiguous parts of the Inventory sites on the Lothian/south side of the River Forth and within the visual contour are within the ‘bridgehead zone’. They offer some protection from development within their boundaries to key views indicated in the map, as also do the Inventory sites not in the bridgehead zone.
5.c.6 Battlefields

The Inventory of Historic Battlefields is a non-statutory designation for Scotland's nationally significant battlefields, which seeks to retain key landscape characteristics and important features for the future, protecting, managing, enhancing and promoting them as appropriate, while allowing the landscape to accommodate modern demands. There are no new legal restrictions on the area identified by the Inventory maps. Instead, the Inventory sites will be given particular consideration in the planning process and in the plans and policies of other relevant public bodies. Planning authorities and public bodies may consult Historic Scotland on development proposals considered to affect an Inventory battlefield and may give them consideration in the determination of a case.

The property stands at its northern end within Inverkeithing Battlefield, which is included in the Inventory of Historic Battlefields. North Queensferry was the landing point in 1651 of an invading English army. Since then the battle landscape has physically changed through land reclamation, the new Rosyth garden city, the growth of Inverkeithing and the concentration of transport infrastructure at this headland. Topography and contemporary accounts give clues to the location of initial stances of the English army at Ferryhills, cut through by the Forth Bridge tunnel, and these are among the key viewpoints within the further setting of the bridge.

A recent archaeological investigation was organised by North Queensferry Heritage Trust and Fife Council into a possible English army breastwork on the Ferry Hills. It uncovered a bank of large lumps of angular whinstone rock with mechanical quarry drilling holes, making this a feature most likely associated with the construction of the railway and the bridge. The bridge and its approaches impact on the landscape of the battlefield, and yet management of the battlefield will help towards conserving its setting.

5.c.7 Natural Designations

Natural heritage designations take account of landscape, biodiversity, geo-diversity and public enjoyment of the Countryside. A hierarchy of designations exists ranging from European to local level. These apply to the inter-tidal zone close to and below the bridge and are layered according to their value to different species.

Of these, Ramsar sites give the strongest protection available to natural sites of European importance in the European Union. Ramsar sites are wetlands of international importance, designated under the Ramsar Convention of 1971 (ratified by the UK in 1976). This designation applies to the inter-tidal shoreline of North Queensferry round to and including Inverkeithing Bay, and on the corresponding southern shore, the area from Port Edgar and Queensferry around Dalmeny and Hound Point, taking in Diamond Island as far as and including Granton Harbour west breakwater.

(Only Rosyth, Dalgety Bay and Hopetoun are stretches of the shore not within this designation). This means that the rocky shore beneath the Forth Bridges (both Road and Rail), the ferry slipways and their immediate environs are protected from actions that might harm their value to migratory bird species, in particular. A side benefit is protection of the foreground in views from the shore of the Forth Bridge.
The main natural designated sites are:

Firth of Forth Ramsar (wetland) natural site:
http://gateway.snh.gov.uk/siteinfojsp?pa_code=8424
Link to more information about Ramsar Sites can be found at: www.snh.gov.uk/protecting-scotlands-nature/protected-areas/international-designations/ramsar-sites/

Firth of Forth Sites of Special Scientific Interest (SSSI):
http://gateway.snh.gov.uk/siteinfojsp?pa_code=8163

Sites of Special Scientific Interest (SSSI) are those areas of land and water (to the seaward limits of local authority areas) that Scottish Natural Heritage (SNH) considers to best represent natural heritage. SNH designates SSSI under the Nature Conservation (Scotland) Act 2004. SSSIs are protected by law. It is an offence for any person to intentionally or recklessly damage the protected natural features of an SSSI.

The Site Management Statement for the Firth of Forth SSSI sets out broad objectives for management which focus on maintaining bird populations, favourable conditions for feeding, resting, roosting and breeding, habitats of a botanical and invertebrate interest, significant geological features, and encouragement of balance between recreational enjoyment and natural conservation.

Carlingnose Quarry SSSI is managed by the Scottish Wildlife Trust and includes a stage in the Fife Coastal Path that offers good views towards the bridge. It has a high degree of height and invertebrate, significant geological features, and encouragement of balance between recreational enjoyment and natural conservation.

Several World Heritage Sites suffer from over development around them - even possibly as a result of inscription. UNESCO rightly wants to ensure that the setting of a World Heritage Site can be safeguarded against inappropriate development. First, the setting needs to be understood by identifying the prime viewpoints. Then viewshed analysis is discussed as a tool that helps to achieve this. The need or not for Heritage Impact Assessment can then be narrowed down so that it is not obliged to come into play until really needed.

“...viewshed analysis is discussed as a tool that helps to achieve this. The need or not for Heritage Impact Assessment can then be narrowed down so that it is not obliged to come into play until really needed."

5.c.8 Setting: Views and Viewshed Analysis

As the angle of approach makes a big difference to experiences of the Forth, including the kinetic experience when the viewer is in motion, it was important to select views by physical investigation of as many points as possible. The views move around the bridge clockwise from due north and were taken in 2012-13, chosen in light of public consultation and a photographic competition in the summer of 2013. The locations are numbered and mapped overleaf.

The numerical scores in the first column relate to the mapping of viewsheds by GIS (the use of contour lines on digital maps in a Geographic Information System, explained on pages 107 to 111). One point is scored for each of the tops of the bridge’s three towers, and one for each of the two portals or adjacent stretch of approach viaduct, and one point for each of the bases that can be seen. Higher scores do not necessarily mean a better view than those that are close to and more constricted.
Viewpoint	Visibility of Forth Bridge	Images Approximately Clockwise
1. North Queensferry, slope below bridge (looking N, 2012 and S, 2011) | The whole cantilever crosses dry land, as a mass of complex steelwork, broad at the base of Fife tower, narrowing to a point at masonry pier. | ![Image 1](image1.jpg)
2. North Queensferry from Fife to Inchgarvie Cantilever | Wooded backdrop; Massive tower dwarfs light on pier of Bouch suspension bridge, Inchgarvie Island just to the left. | ![Image 2](image2.jpg)
3. North Queensferry East Battery Pier looking North | Steel and shadow combine to give impression of an arch. Backdrop of Forth Road Bridge, village and wooded hill to West, signal station to east. | ![Image 3](image3.jpg)
4. North Queensferry East Battery Pier and rising ground above it (photo in 2006, during the work) | Full view at tight angle showing batter of the steelwork. Not now open to public. | ![Image 4](image4.jpg)
5. North Queensferry Deep Sea World | Portal and Fife Cantilever boom over former quarry containing aquatic visitor attraction and car park. The old Signal Station and the new cottages added to resemble it are on the lip of the quarry. The cafe looks onto the bridge. | ![Image 5](image5.jpg)
6. N Queensferry, Helen Lane | Dominant among new and old buildings, Forthside Terrace, East Bay and quarries. | ![Image 6](image6.jpg)
7. North Queensferry Carlingnose Battery | Good but private view over bridge above track level. Visitors discouraged. | ![Image 7](image7.jpg)
8. Carlingnose Point SWT Wildlife Reserve | Fife Coastal path through quarries, views towards whole bridge and the three arches, than just Inchgarvie and Queensferry Towers from torpedo mining pier. | ![Image 8](image8.jpg)
9. Fife Coastal Path, Port Laing to Inverkeithing Bay | Queensferry and part of Inchgarvie Tower at an angle, then out of sight from Port Laing beach, but tops of towers in view from path North of beach and more from rocky shore (shown right). | ![Image 9](image9.jpg)
10. North Queensferry Ferryhill Rd | The Fife Tower of Forth Bridge rears up as road crests the hill that had hidden it from view. | ![Image 10](image10.jpg)
<table>
<thead>
<tr>
<th>Viewpoint</th>
<th>Visibility of Forth Bridge</th>
<th>Images Approximately Clockwise</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. M90 by Crossgates</td>
<td>Three towers are straight ahead. Dot matrix signs distract.</td>
<td>3</td>
</tr>
<tr>
<td>12. Bridge over M90 at NT857138 Fordell Pirs (just E of fly over bridge)</td>
<td>Angled bridge over water shows a true arch between Queensferry and Inchgarvie Towers. In evening light out of sight in hollow. Pavement, but involves a walk from Duloch over M90 bridge.</td>
<td>6</td>
</tr>
<tr>
<td>13. Hillend B981 at NT 848138</td>
<td>Angled bridge as above but from a lower point. Now the Forth is not visible so bridge appears to cross dry land. Farm and in foreground, Inverkeithing High School is in middle distance. No stopping point, but enjoyed from cars heading south.</td>
<td>8</td>
</tr>
<tr>
<td>14. St Davids Harbour Dalgety Bay shore</td>
<td>The further east away from the bridge, the more all three towers come into view, silhouetted above track level, and without Forth Road Bridge.</td>
<td>8</td>
</tr>
<tr>
<td>15. Donibristle House and Downing Point, Bathing House Wood, Fife Coastal Path</td>
<td>A small headland masks part of bridge, itself offering a view. The House is angled eastward, is enfolded by modern Dalgety Bay housing.</td>
<td>3</td>
</tr>
<tr>
<td>16. Aberlady, Kilsipindie golf course (Gullane similar, even further away, at 30 km)</td>
<td>Full elevation (Inchgarvie tower is less obvious due to hill behind) but very far off. Curvature of the earth means that track level and below is out of sight.</td>
<td>3</td>
</tr>
<tr>
<td>17. Hound Point, Dalmeny</td>
<td>Full elevation.</td>
<td>8</td>
</tr>
<tr>
<td>18. Whitehouse Bay (2013)</td>
<td>Long Craig Pier and shore in foreground. Inchgarvie island framed by Inchgarvie Cantilever and Forth Road Bridge.</td>
<td>8</td>
</tr>
<tr>
<td>19. Leuchlod, Mons Hill, Dalmeny Estate Fields</td>
<td>Full view from Leuchlod across fields. Road and rail decks are aligned so Rail Bridge has clean lines.</td>
<td>8</td>
</tr>
<tr>
<td>20. Mons Hill Woodland Dalmeny Estate</td>
<td>Looks down onto the bridge through trees.</td>
<td>8</td>
</tr>
<tr>
<td>21. Long Craig Pier</td>
<td>South Approach span is in elevation.</td>
<td>8</td>
</tr>
<tr>
<td>22. Long Craig Pier</td>
<td>Inchgarvie cantilever on the skew; Forth Bridge and biggest crane in Rosyth Docks are beyond.</td>
<td>8</td>
</tr>
<tr>
<td>23. Leith Docks Entrance</td>
<td>Inchgarvie (part) and Fife Cantilevers and north suspension span. Rest is hidden by Mons Hill and Cramond Island.</td>
<td>3</td>
</tr>
<tr>
<td>24. Newhaven Harbour</td>
<td>Inchgarvie (part) and Fife Cantilevers. Showing Granton Middle Pier (that carried train ferries until Forth Bridge was built) and leading light.</td>
<td>3</td>
</tr>
<tr>
<td>25. Granton Harbour</td>
<td>Inchgarvie and Fife Cantilevers seen from Anchor apartments (which block view from mainland Granton) and from end of breakwater. Part of Inchgarvie cantilever is obscured by Cramond Island.</td>
<td>3</td>
</tr>
<tr>
<td>26. Calton Hill, Old and New Towns of Edinburgh WHS 2013</td>
<td>Fife Cantilever, upper part between Muirhouse towers. Foreground St Andrews Cathedral, St Andrew and St George Church.</td>
<td>3</td>
</tr>
<tr>
<td>27. Edinburgh Castle</td>
<td>Fife Tower, just over Mons Hill, Ochil Hills beyond. With domes of West Register House, also in Old and New Towns of Edinburgh WHS; the rest of this view is not within that WHS.</td>
<td>1</td>
</tr>
<tr>
<td>28. Arthurs Seat</td>
<td>Fife Cantilever, but not in silhouette (Forth Road Bridge towers more prominent).</td>
<td>1</td>
</tr>
<tr>
<td>29. Corstorphine Hill (many trees in the way; view is from open view nearest Barnton Rd)</td>
<td>Top of Queensferry tower only (Forth Road Bridge towers more prominent).</td>
<td>1</td>
</tr>
<tr>
<td>30. Craiglockhart Hill</td>
<td>Queensferry and Inchgarvie towers masked by Mons Hill; Craiglockhart Asylum (Napier University) in foreground.</td>
<td>2</td>
</tr>
<tr>
<td>Viewpoint</td>
<td>Visibility of Forth Bridge</td>
<td>Images Approximately Clockwise</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>31. B924 Bankhead New Hall Gate</td>
<td>Trees obscure lower part of bridge in summer. Open field beyond estate wall.</td>
<td></td>
</tr>
<tr>
<td>32. Bankhead cottages</td>
<td>Towers over rise in ground; chimney of Bankhead steading.</td>
<td></td>
</tr>
<tr>
<td>33. B924 and Easter Dalmeny Watertower</td>
<td>All three towers across fields.</td>
<td></td>
</tr>
<tr>
<td>34. Dalmeny Village</td>
<td>Humps above trees as if bridge were 'Nessie' the Loch Ness Monster, from road, and from churchyard through trees.</td>
<td></td>
</tr>
<tr>
<td>35. Dalmeny Village</td>
<td>Framed between houses.</td>
<td></td>
</tr>
<tr>
<td>36. Footpath on former railway Dalmeny to South Queensferry</td>
<td>Bridge is glimpsed through trees in summer, more visible in winter.</td>
<td></td>
</tr>
<tr>
<td>37. Queensferry, foot of Hawes Brae</td>
<td>Approach spans standing in water accentuate their height. The closer to the bridge the more solid it appears.</td>
<td></td>
</tr>
<tr>
<td>38. Dalmeny Station</td>
<td>Portal and Queensferry tower, above track curving onto bridge. Showing the downward splay or 'Holbein Straddle' of the main trusses counterbalanced by the splay upward and outwards of the top chords of the cantilevers.</td>
<td></td>
</tr>
<tr>
<td>39. Hawes Rd under Bridge</td>
<td>Stone walls to N and S; steel trussed girder above. Plaques by ASCE, Railway Heritage Trust and Saltire Awards slightly too far away to be read.</td>
<td></td>
</tr>
<tr>
<td>40. Queensferry, right of Hawes Pier</td>
<td>Approach spans standing in water accentuate their height the cantilevers are quite distant.</td>
<td></td>
</tr>
<tr>
<td>41. Queensferry Hawes Pier</td>
<td>The most commonly seen view, but upper part of pier is disfigured by buildings. Bridge looks solid.</td>
<td></td>
</tr>
<tr>
<td>42. Asburnham Loan, Queensferry, old construction site for Forth Bridge</td>
<td>Tops of three towers. New houses on site of bridge construction yard, masked from the shore by trees. A narrow footpath runs parallel to the wooded embankment.</td>
<td></td>
</tr>
<tr>
<td>43. Queensferry High School</td>
<td>Three towers, portal and two suspended spans at track level above houses and trees.</td>
<td></td>
</tr>
<tr>
<td>44. Queensferry walkway to Dalmeny station (former railway line)</td>
<td>A few gaps between trees show bridge just below track level.</td>
<td></td>
</tr>
<tr>
<td>45. Queensferry Newhalls Road</td>
<td>Open view of a more transparent structure than closer to; south approach spans are seen in true elevation. Shore in foreground also known as the Craigs, or rocks.</td>
<td></td>
</tr>
<tr>
<td>46. Queensferry High St</td>
<td>Vista glimpsed between buildings, and view from one open area.</td>
<td></td>
</tr>
<tr>
<td>47. Queensferry Harbour down Gote Lane</td>
<td>Two forms of transport. (The balloons represent a venue open on European Heritage Day/Doors Open Day).</td>
<td></td>
</tr>
<tr>
<td>48. Queensferry Harbour</td>
<td>Full view of both converging bridges obtainable from harbour walls.</td>
<td></td>
</tr>
<tr>
<td>49. Queensferry, The Binks</td>
<td>Natural jetty formed in the geology made this an ancient ferry departure point, approach viaduct and south portal are in elevation (shown at low tide).</td>
<td></td>
</tr>
<tr>
<td>50. Contact and Education Centre</td>
<td>Through the viewing window, when under construction in 2012.</td>
<td></td>
</tr>
<tr>
<td>Viewpoint</td>
<td>Visibility of Forth Bridge</td>
<td>Images Approximately Clockwise</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>51. Forth Rd Bridge Plaza near FETA office and marble monument</td>
<td>Looking across Queensferry. Valuable open space. Some trees had grown to impede the view from the monument to the Forth Road Bridge, but were cut down in late 2012 after this photo was taken.</td>
<td>8</td>
</tr>
<tr>
<td>52. Port Edgar</td>
<td>Another ferry pier of 1810, enlarged by later breakwaters and used by the Royal Navy 1916-1978 (and Norway, 1940-44) for minelayering and laying. Full elevation, below Road Bridge.</td>
<td>8</td>
</tr>
<tr>
<td>53. Bavelaw, Pentland Hills</td>
<td>At full zoom, this view shows the mass of steel of the bridge against a peri-urban backdrop of Inverkeithing and fields. The tallest tower in the area, at Edinburgh Airport, would have to be twice as tall again to come into its field of view. This gap increases as the viewer climbs higher in the Pentlands.</td>
<td>5</td>
</tr>
<tr>
<td>54. Caimpapple and the Knock, W Lothian</td>
<td>Three towers, across countryside.</td>
<td>6</td>
</tr>
<tr>
<td>55. Beecraigs Country Park</td>
<td>Tops of three towers more visually dominant than the road bridge in front. Foreground of rolling farmland and shale oil bings (no longer active).</td>
<td>4</td>
</tr>
<tr>
<td>56. Hopetoun House/ Society Bank shore</td>
<td>Full elevation, thru Road Bridge, and coming out much stronger than it. The axis of the drive had been Bass Rock but trees and bridges obscure it, becoming instead the primary objects of the viewing belvedere platform.</td>
<td>8</td>
</tr>
<tr>
<td>57. Newtown Layby, A904</td>
<td>View across former Motorola, through Forth Road Bridge. Forth Bridge still dominant.</td>
<td>5</td>
</tr>
<tr>
<td>58. Society Point</td>
<td>Full elevation, with more of the Forth Bridge seen below road level than above it.</td>
<td>8</td>
</tr>
<tr>
<td>59. Abercorn</td>
<td>Full elevation, thru Road Bridge, the road deck and track are closer to each other and the Road Bridge towers closer together as the viewer is more distant.</td>
<td>8</td>
</tr>
<tr>
<td>60. The Binns Monument</td>
<td>Full elevation above trees of Hopetoun designed landscape.</td>
<td>8</td>
</tr>
<tr>
<td>61. Blackness Castle</td>
<td>Full elevation, through Road Bridge. Queensferry Tower loses silhouette to Mons Hill.</td>
<td>8</td>
</tr>
<tr>
<td>62. Above Blackness Castle</td>
<td>Fifa Cantilever partly obscured by castle, south cantilever not silhouetted.</td>
<td>3</td>
</tr>
<tr>
<td>63. Bonhard, Barrowstone Road, Kinglass Farm to Walton junction with A803 Brrness, Falkirk</td>
<td>Full elevation, through Road Bridge. 3 towers in silhouette, Queensferry tower partly in front of Moris Hill.</td>
<td>7</td>
</tr>
<tr>
<td>64. Limekilns</td>
<td>Seen through Rosyth Docks and FRB.</td>
<td>3</td>
</tr>
<tr>
<td>65. Rosyth Docks (former naval stores, not the working ship repair yard)</td>
<td>Left of Road Bridge, only the upper parts seen above road deck and embankments, to which a tower of PPR will be added. Further west modern ephemera is in foreground. A large shed intervenes in view from landlocked Rosyth Castle and more development is likely.</td>
<td>3</td>
</tr>
<tr>
<td>66. Forth Road Bridge</td>
<td>Opportunities from walk/cycleway to view Rail Bridge in elevation at track level all the way along. Rare chance to look down on it from pylons. Houses in foreground were built on the construction platform for the Road Bridge, after 1964.</td>
<td>8</td>
</tr>
<tr>
<td>67. North Queensferry Railway pier</td>
<td>Approach spans in elevation. Full view of rest of bridge.</td>
<td>8</td>
</tr>
<tr>
<td>68. N Queensferry Town Pier</td>
<td>Diagonal emphasises the Holbein straddle. A pair of new houses are on piloti to allow views through to the bridge.</td>
<td>6</td>
</tr>
<tr>
<td>69. North Queensferry Village</td>
<td>Stone piers look slim from the side elevation, in amongst the houses, and girders are so high as to go unnoticed except when a train crosses. Stonework is more massive when directly beneath.</td>
<td>1-8</td>
</tr>
<tr>
<td>70. N Queensferry</td>
<td>Perspective view of two bridges (by Wouter van Niel).</td>
<td>7</td>
</tr>
<tr>
<td>Viewpoint</td>
<td>Visibility of Forth Bridge</td>
<td>Images Approximately Clockwise</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>71. North Queensferry, Mt Hooly Crescent, turning area</td>
<td>2</td>
<td>View towards Fife Portal and tower at girder level. (View in December 2012, tree foliage obscures views to and from this location in other seasons) The view from Fife Coastal path below this is similarly seasonal, the masonry piers more to the fore.</td>
</tr>
<tr>
<td>72. North Queensferry, Mt Hooly Crescent, small car park/ view point at edge of Conservation Area</td>
<td>3</td>
<td>30 m to the west of the above view, free from trees, over rooftops. Full view of bridge, with Holbein straddle evident.</td>
</tr>
<tr>
<td>73. Dunfermline New Row</td>
<td>3</td>
<td>View from Town Centre past Alhambra theatre (brick building on right). The signal tower on Castl Island hill, in front of Inchgarvie Tower, is not an obstacle as it can be seen through.</td>
</tr>
<tr>
<td>74. Dunfermline Pittencroff Park</td>
<td>3</td>
<td>Tops of three towers over Castl Island Hill from beside Pittencrof House. View from other parts of park obscured by trees and houses on a ridge. One wind turbine in foreground was pointed out by a Flickr photographer.</td>
</tr>
<tr>
<td>75. Castl Island signal station From Lothian View</td>
<td>3</td>
<td>Three towers above crest of Ferryhills.</td>
</tr>
<tr>
<td>76. Inverkeithing from Whinny Hill Crescent</td>
<td>3</td>
<td>Tops of three towers visible over Ferry Hills, with water tank under turf on left. In the old town the bridge is aligned so only the very top of the Fife Tower is seen.</td>
</tr>
<tr>
<td>77. Ferry Hill above North Queensferry</td>
<td>4</td>
<td>Telephoto, with Pentland Hills in the distance. Emphasises the upwards splay of the cantilevers counterbalancing the overall Holbein straddle.</td>
</tr>
<tr>
<td>78. N Queensferry Battery Pier (view to N)</td>
<td>4</td>
<td>Overwhelming presence.</td>
</tr>
</tbody>
</table>

The viewpoint study shows that it is the Fife Tower and cantilever that stands most prominently because it projects into the Firth whereas the Queensferry cantilevers are more sheltered, enclosed by Mons Hill to the east and the gently rising ground of West Lothian and Falkirk to the west. From points north and south, much depends on climatic conditions where land is the backdrop. The bridge stands out against sunshine and shadows that give a visual contrast, but on other occasions it might merely vanish into the landscape. The Firth Bridge and its neighbour, the Forth Road Bridge, are sufficiently far apart in north-south axes that in most cases one or the other bridge will be captured in a photograph, but not both together. The tallest modern building is the control tower of Edinburgh Airport, 57m high, built in 2005. It can be seen from the top of the Forth Bridge, and vice versa. But they are hardly in competition at a distance of around 5-6 km.
5.c.9 The Viewshed Process Applied to the Forth Bridge

When viewed in line from Bavelaw in the Pentland Hills, 16-20 km away, the control tower would need to have been twice as high again to intrude into the sight line of the Forth Bridge. From higher points in these hills, the bridge is a distant element, unobstructed by man-made competition. This suggests that development does not need to be controlled to protect such long views.

From east and west long views benefit where a backdrop is either sky or water. This particularly applies to views from the west looking out to sea. Therefore, development on the Firth shoreline should take into consideration impact on some cherished views. However, it is evident that existing structures along the edge of the Firth have almost no adverse effect when viewed as part of the back drop to the Forth Bridge. The Forth Road Bridge is clearly distinguishable even when views pass through it, and the Queensferry Crossing now under construction will have a similar effect. Buildings by the shore at Rosyth Dockyard, and at Longannet, the largest power station in Scotland, do not compete against the Forth Bridge even when they come into the background frame. But in some lights the views from those places will first take in the two modern bridges. It is therefore suggested that a strictly-defined Buffer Zone would be less helpful than would attention paid to setting at any distance, not for the potential harm to the outstanding value of the bridge (which is almost certainly nil) but for the benefit the bridge can bring to experiences of the Forth Estuary. For this reason, the bridgehead zone comprising the two communities of North and South Queensferry is the area of focus for research on possible economic benefits and local concerns on ways to mitigate and manage traffic flows.

A Geographical Information System (GIS) process known as ‘Viewshed’ was used to score locations from 0, where nothing can be seen, to 5, where both portal towers and the top of each of the three cantilever towers are seen. Three of the points are at a height of 100.6m (330 ft) and two points representing the rail level above high water at the two towers are at 48.2m (158 ft). Higher scores indicate that more of the bridge can be seen.

The Points Used to Score the Viewshed
The observer is assumed to be 1.8m high. Trees and buildings are not factored in, so there is still a need to verify what is visible from the ground. For this, see the preceding photographic “Viewpoints Study” at S.c.8.

Viewshed analysis around the Firth of Forth, with the Forth Bridge in the centre. The whiter the area, the higher the potential visibility. A score of 0 (out of sight) is represented in black; 5 (in full view) is white and the values in-between are shades of grey.

The viewshed highlights the fact that Mons Hill is a significant natural obstruction that shields Edinburgh from the bridge, and vice versa. Only the Fife Tower can be seen from Granton, Newhaven, Colton Hill, Edinburgh Castle and Arthur’s Seat.

On the south bank, the bridge is seen in full elevation from the Dalmeny shore, as far as Hound Point due east, and from many points along the shore of the Inner Firth. See map further to the east of Edinburgh, East Lothian only offers distant glimpses of the upper part of the bridge, from Aberlady and Crockenzie. Recent development at Leith now intervenes from Prestonpans. Beyond 15km the view of the bridge from sea level starts to disappear due to the curvature of the earth. To the west of the bridge, areas of West Lothian and Falkirk Councils offer fuller views from the shore and from Hopetoun, the Binns Monument, Blackness, Bohness and the Bathgate Hills.

On the north bank in Fife, the bridge is angled away from the Rosyth to Charlestown shoreline of the Inner Firth and so is competing against other features in Rosyth docks, and the neighbouring Forth Road Bridge. From the east the scene from the Fife Coastal Path features the bridge leading southwards. The degree of prominence from Dalgety Bay and from Burntisland depends on the backdrop and on climatic factors. There are points inland from which the bridge is also visible, around the M90 motorway, and the upper parts may also be seen from Dunfermline, over intervening hills.

The viewshed can be rotated through 90 degrees into any number of cross-sections showing the profile of land between the bridge and a viewer. A selection of locations in the viewshed is shown here. The graphs represent lines of sight from given locations to the Forth Bridge. Red lines are points that cannot be seen from the observer, shown as a black dot on the left of each graph. Green indicates what could be seen in the lie of the land, assuming that trees and buildings did not intervene in front of or beyond a specific target.

City of Edinburgh Council has adopted such a system to establish the impact of any proposed high-rise development within the city.
Pittencrieff Park, Dunfermline, beside Pittencrieff House, Fife: Tops of three towers show above Eastland Hill, (the green/red bump), Ferryland Hill (only the tip) and are silhouetted against snow on the Pentland Hills. The highest points of the hilltops as the sun sets in the west, and houses intrude further to the west

Cairnpapple Hill, West Lothian: The Forth Bridge is seen at long distance in full elevation. The Forth Road Bridge is over to the left and not in its way.

House of the Binns, West Lothian: View from the monument over-looking Hopetoun, the bridge is in full elevation through the Forth Road Bridge, the two decks in perfect alignment.

This is useful in determining the potential impact of development on the Old and New Towns of Edinburgh existing World Heritage Site, even well beyond the property (there is no Buffer Zone). What may be built in low-lying folds of hills may have less impact than would a new building of the same height on the crest of a hill. It may then be possible to adjust the massing of that development so as to minimise harm to the setting of specific landmarks. Planning Authorities considering setting as a factor in determining planning applications may also take guidance from: http://www.historic-scotland.gov.uk/setting-2.pdf

The first two viewed sightlines show that development in the centre of Edinburgh cannot obstruct views of the Forth Bridge. The others show that some hills could potentially affect views from a greater distance.

Summary in Respect of Setting In conclusion, the several layers of designated land and shore around the bridge ensure that it is protected at an appropriate level. The north side is a projecting headland, so the recent and on-going developments at Rosyth Dockyard and Dalgety Bay do not impact on the immediate setting of the bridge, but benefit from angled views of the bridges that lie in front. The height of the Forth Bridge, and its neighbouring Road Bridge, ensures that they are landmarks even well inland, as set out in the attributes table and the illustrated clockwise setting table. Yet there are some points close to where one or other bridge is hidden by a hill. The Forth Bridge is so dominant that developments in either town, or their hinterland, would not in most cases threaten its appearance or setting. However where views that are of value are identified through the key views study, planning authorities will take into consideration in their decision-making the protection of those views.

No additional statutory controls result from World Heritage listing in Scotland, but national guidance requires planning authorities to set specific policies to assist in managing development within the Sites and within the wider setting of the Sites.

Scottish Planning Policy (SPP, adopted in 2010) states:

*120. Planning authorities should protect World Heritage Sites and their settings from inappropriate development, [include] relevant policies in the development plan and [set] out the factors that will be taken into account when deciding applications for development proposals which may impact on a world heritage site. The immediate setting of a World Heritage Site, important views, and other areas which are important to the site and its protection, should be protected from inappropriate development. The setting of a World Heritage Site is the area around it in which change or development may have an adverse impact on the World Heritage Site.

121. A statement of outstanding universal value is adopted by UNESCO when a site is inscribed, which provides the basis for the effective protection and management of World Heritage Sites. World heritage site management plans should be prepared which summarise the significance of the site and set policies for the protection and enhancement of the site. Planning authorities should consider incorporating the management plan into the development plan as supplementary guidance.”

A revised SPP aims to be more incisive (2013 consultation draft):

*121. Where a development proposal has the potential to affect a World Heritage Site, the planning authority should protect and preserve its Outstanding Universal Value.”

The Town and Country Planning (Scotland) Act 1997 and The Planning etc (Scotland) Act 2006 provide the legal framework for local planning policy. They act as the principal primary legislation guiding planning and development in Scotland.

As explained above, individual buildings, monuments and areas of special archaeological, architectural or historic interest are protected under the Planning (Listed Building and Conservation Areas) (Scotland) Act 1997 and the 1979 Ancient Monuments and Archaeological Areas Act. All of Scotland’s World Heritage Sites incorporate, include or are composed of scheduled monuments or listed buildings, the setting of which is a material consideration for Local Authorities in determining applications for planning permission. In all cases where a proposed development may impact upon the setting of a scheduled monument or category A listed building, Historic Scotland must be consulted.

Local policies specifically protecting the property will be contained within the Fife and City of Edinburgh Local Plans. Local Development Plans (LDP) set out policies and proposals for the development and use of land. The policies in each LDP are used to determine applications for development. The LDP informs decisions on investment opportunities, the provision of infrastructure and community facilities. Local residents and community groups are encouraged to use the LDP to understand and engage with the planning issues affecting their area.

Local development plans, as the local interpretation of regional and national planning policy, must conform with the relevant Strategic Development Plan (SDP) for their region and the National Planning Framework (NPF). LDP policies provide the means by which development is managed, and by which World Heritage Sites are protected from inappropriate development. Below the LDP more detailed local guidance is set out in...
Supplementary Guidance documents. The planning authorities surrounding the bridge are currently in a state of transition between the old Local Plans system and the new LDP/SDP system. However the principles behind, and the strength of the policies affecting the bridge and its setting remain the same through this period of change.

Fife Policy Summary

The Dunfermline and West Fife Local Plan (DWFLP), adopted 2012, is to be replaced by the Fife Local Development Plan in 2015. The DWFLP remains the current, adopted statement of Council policy until the LDP is formally adopted. Once the Proposed LDP is published in June 2014, however, it will become a material consideration in the determination of current planning applications. In the Fife LDP it is intended to include policy specifically directed at protecting the context of the Forth Bridge.

A sample policy is that Development on the undeveloped coast in [Fife] will not be supported unless certain safeguards are followed, directing development first to developed coastline and which:
- demonstrates high standards of design and siting,
- demonstrates appropriate scale and character,
- is subject to no will it contribute to coastal erosion or flood risk,
- safeguards cultural / natural heritage resources, footpath/cycle networks,
- avoids obtrusive lighting or coalescence of coastal villages.

City of Edinburgh Policy Summary

The Rural West Edinburgh Local Plan (RWELP), adopted 2006, altered 2011 is to be replaced by the Edinburgh Local Development Plan (LDP), published as a proposed plan in March 2013. The RWELP remains the current, adopted statement of Council policy until the LDP is formally adopted, anticipated to be by late 2015. The proposed LDP is, however, a material consideration in the determination of current planning applications.

The DWFLP/RELNP and LDP contain key policy objectives that are broadly comparable across both local authorities. They include those to:
- ensure that new development meets the objective of sustainable development and contributes to a healthy and attractive environment;
- protect, conserve and enhance the key environmental and heritage resources, including landscape, built heritage and important natural habitats;
- encourage quality of design in all new forms of development; and
- protect the special character of historic buildings and townscape.

Detailed policies then focus on the following themes which are of particular relevance to the property and its setting:
- Design of new development - the Council encourages innovation and well designed developments that relate sensitively to the existing quality and character of the local and wider environment, generate distinctiveness and a sense of place, and help build stronger communities.
- Development in the Green Belt and countryside – here, development is only permitted where it meet certain restricted criteria and would not detract from the landscape quality and/or rural character of the area.
- Nature conservation and biodiversity – development is not permitted which would adversely affect the integrity of designated areas, protected landscapes or species unless in exceptional circumstances of demonstrable public benefit.
- Special landscapes areas – development is not permitted which would damage or detract from the overall character and appearance of the area.
- Trees – development will not be permitted which is likely to have a damaging impact on a protected tree or one considered worthy of retention, unless necessary for good arboricultural reasons.
- Archaeology – development is not permitted which would adversely affect nationally important remains or their setting. Archaeological evaluation, preservation in situ or excavation, recording and analysis will be required where non-designated remains are likely to be affected.
- Historic buildings – there is a general presumption against demolition or significant alterations which would have an adverse effect on the character of historic buildings. Other alterations will be permitted only if not detrimental to the special character, historic interest or setting of the building.
- Conservation areas – development must preserve or enhance the special character or appearance of the conservation area and its setting.
- Historic gardens and designed landscapes – development will only be permitted where there is no detrimental impact on the character of a site or its component features.

Local Landscape Areas

In place of the former designation “Area of Great Landscape Value” and “Areas of Outstanding Landscape Quality” (AGLV/ AOLS) local authorities have developed proposals for what were called Candidate Special Landscape Areas (cSLA).

The term candidate will be dropped after consultation is complete and then the term will be Local Landscape Areas, as already adopted in Fife (see map). As the landscape areas are at different stages in the consultation process they carry different names in each local authority (see map). These tend to be areas that are rural in character, and so policies will aim to retain that character.

City of Edinburgh has these:
- cSLA01: Southern Forth Coast
• cSLA04 Dundas Estate
• sSLA22 Craigie Hill (south of A90)

Fife has these:
• Ferryhill,
• Letham Hill,
• South East Dunfermline
• Forth Islands

In West Lothian the Forth Shore AGLV will in due course become the Forth Coast Local Landscape Area. To inform the Local Development Plan, specific research has addressed, for example, the capacity for Wind Energy Development in West Lothian, a consultation published in 2011. This found that only limited pockets around Livingston New Town, the M8 Motorway and around Black Law to the south west had that potential. The part nearest the Forth shore, Hopetoun Estate, was considered to be on the "highest scale of sensitivity and therefore unsuited to use as a wind farm. Even if that were not the case we have argued that wind turbines would not threaten the Outstanding Universal Value of the bridge.

A similar capacity study into windfarms in Fife found that there are no landscape areas of Fife suitable for development of extensive windfarms with large scale turbines. In contrast with much of Scotland there is no or very limited capacity for wind turbines in the highest upland areas, due to the limited extent, high visual sensitivity and landscape value of these areas within Fife. Larger scale lowland farming areas have the greatest inherent capacity for wind turbine development. Some smaller scale lowland valley and basin areas have no or very limited capacity. Some coastal areas have limited capacity. Similar areas, whilst of a suitable scale and character for wind turbines, are visually sensitive and have a high landscape value and therefore have no capacity for development. (Onshore Wind Energy Strategy for Fife 2012).

The Management Plan, which accompanies this Nomination, has been developed under the auspices of the Forth Bridges Forum’s sub-group, the Forth Bridge World Heritage Nomination Steering Group. The aim of the plan is to meet the future management needs of the nominated property and to coordinate the many interested bodies, groups and individuals. To be successful, management planning needs to follow a continuing process of assessment, objective setting, consultation, monitoring and review as set out in the unpublished ICOMOS UK draft guidance paper Management of the Historic Environment 2007, and the recently published UNESCO Resource Manual Managing Cultural World Heritage (November 2013).

The process of developing this Plan has been led by Historic Scotland, in partnership with Network Rail, the owner of the property. It has involved all members of the Forth Bridge World Heritage Nomination Steering Group, and has further benefitted from information drawn from public consultation. It is related closely to the proposed Outstanding Universal Value and the assessment of the current condition, pressures and threats outlined elsewhere in this nomination document.

The Plan expresses a vision for management of the property, which is:
• To manage the property in a sustainable manner which conserves, enhances and promotes its Outstanding Universal Value both within and around the Site itself, but also at a national and international scale
• To carefully balance the requirements of protection and conservation against the need for access to the property, and the interests of the local communities in encouraging sustainable economic growth
• To engage with and deliver benefits to the local communities around the property whilst also minimising any negative effects that might follow a successful nomination
• To develop opportunities for education and learning, especially in the context of the adjacent road bridges
• To generate income and employment that adds value to the local economy and can contribute to the conservation and promotion of the property.

A list of opportunities for improvement and actions proposed for protection and conservation to deliver this vision have been produced by the Forth Bridges Forum World Heritage Nomination Steering Group, based on work commissioned from Rebank Consulting Ltd, and on a public consultation carried out between 20th May and 11th August 2013. The Plan sets out a prioritised list of agreed action for a six year period, with lead partners for each. This action plan is subject to measurement and monitoring as set out in Section 6 of this Nomination. It will be under regular review by the Steering Group to ensure co-ordination of effort and alteration of actions to reflect any changes in the condition or needs of the property. Resources for implementation are identified in Section 5.f.
The Forth Bridges Forum is a Transport Scotland-led management Forum, established to ensure that local stakeholders’ interests remain at the core of the management and maintenance of the Forth bridges. These are the Forth Bridge, the Forth Road Bridge, and the Queensferry Crossing.

5.e.2 The Forth Bridges Forum

The group currently comprises representatives from:
- Network Rail (as owner of the property)
- Transport Scotland (Chair)
- Historic Scotland
- City of Edinburgh Council
- Fife Council (the local authorities)
- Visit Scotland (the national tourism organisation)
- FETA (Forth Estuary Transport Authority)
- Queensferry & District and North Queensferry Community Councils
- Queensferry Ambition
- North Queensferry Heritage Trust

This group has already worked together to deliver the nomination, and the intention is that it continues to collaborate, taking forward this Management Plan and reporting back to the Forth Bridges Forum. In doing so, the plan will evolve, and the membership of the group will broaden, involving, for example, other business organisations and adjacent areas. In particular, stronger links with Education Scotland and the Institution of Civil Engineers will be established. Should the World Heritage Committee decide to inscribe the Forth Bridge in 2015, the Steering Group will drop the word ‘Nomination’ from its title.

5.e.3 The Forth Bridge World Heritage Nomination Steering Group

A core priority will inevitably be the conservation, maintenance and operation of the nominated property itself, and a central element within this process will therefore be the implementation of a Partnership Management Agreement (PMA) linked to this Management Plan. The completion and signing up to the PMA is one of the first actions of the Plan, and specifically involves the following members of the Steering Group that have a statutory planning function, besides the potential applicant:
- Network Rail
- Historic Scotland
- Fife Council
- City of Edinburgh Council

The specific function of the PMA will be to ensure the efficient operation of consents for the bridge by monitoring, and where appropriate, consenting any works that are required, whilst at the same time protecting its integrity, authenticity and specifically, its Outstanding Universal Value. The role of the PMA Group will therefore be to protect the Outstanding Universal Value of the property whilst also helping it to continue as an operating structure that is a fundamental part of Scotland’s and the UK’s railway network. A group comprising the PMA partners will therefore meet regularly to ensure that the agreement is properly implemented. The PMA requires annual review of what has been done and a forward look to what will be proposed in the coming year.

5.e.4 The Forth Bridge Partnership Management Agreement Group

The Management Plan is a living document, separate from the Nomination itself. It therefore amplifies the management information contained here and it is the vehicle for reviews of the management objectives.

It comprises:
- the Site description, extent, details of ownership and baseline condition;
- the Statement of Outstanding Universal Value;
- statutory duties of main bodies and other existing management arrangements;
- the operation of heritage protection measures and land use planning;
- a summary of the pressures on/ threats to the property and opportunities for change or improvements;
- means of implementation of the Plan; and
- measures by which it will be monitored.

Most importantly, the Management Plan contains a six-year action plan. As part of the process of developing the Management Plan, several key Management Principles were derived from the Outstanding Universal Value, the current condition of the property, the identified threats and pressures, and the aspirations of the agreed vision for future management. The action plan is arranged around these Principles as follows:

Protection
- To agree and develop a consistent framework for future control to ensure the appropriate protection of the Outstanding Universal Value of the property.
- To report on the Partnership Management Agreement (PMA) between the owners of the property, Network Rail, the two local authorities, Fife and City of Edinburgh Councils, and Historic Scotland, the purpose of which is to facilitate and streamline Listed Building Consents processes in the context of the continuing use and operation of the bridge

Conservation
- To agree and implement a common system for assessment and monitoring of the state of conservation of the property;
- To prioritise and carry out maintenance works to ensure an appropriate state of conservation of the bridge, securing resources where necessary; and
- To develop and implement effective management measures for all identified environmental pressures, disasters and risks to the property.

Presentation
- To implement sustainable visitor management to improve the understanding and appreciation of the property without detriment to its Outstanding Universal Value; and
- To carry out research and interpretation to develop understanding of the property relative to related bridges, and to present its values to a wide range of audiences.

Community Benefit
- In anticipation of further growth in visitors, carry out an infrastructure review, to include roads and parking, in both Queensferry and North Queensferry, as well as in adjacent areas where more capacity might be available.
- To carry out a review of public transport serving the communities at both ends of the bridge, to identify whether it can be better integrated and improved to convey an anticipated increase in visitors.

Inspiration to Future Generations
- To engage communities in the understanding of the property, decision making and management action to protect it for future generations.
- To encourage understanding of the bridge at as many levels as possible within the education system in Scotland
- Specifically, to use the property to promote the engineering profession in Scotland inspiring current and future generations in the UK and across the world.

The most urgent actions are separated out into the Year One Plan, with details of the lead partner responsible for taking forward each action. The Forth Bridges Forum, and the World Heritage Steering Group, will review the Plan every year to update the six-year action plan and agree priorities for the new year.
The communities at both Queensferry have long had the Forth Bridges at the core of their identities. Community involvement is well established through engagement with the local community councils, and through officers and elected members of the local authorities, Fife and City of Edinburgh Councils. These links will be enhanced in the future, and are essential if the impact of inscription is to be managed to deliver local benefits. For example the local communities aim to play a vital part in celebrating the Forth Bridge’s 125th anniversary in 2015.

The Steering Group wished to better understand the economic performance of the Queensferry prior to a possible inscription, and to explore ways that listing could be made to deliver local benefits. Rebanks Consulting Ltd was commissioned in December 2012 to examine those potential economic benefits of nomination to the local communities around the bridge. The consultants accordingly held surgeries with individual businesses in order to inform that report. The Business Improvement District in Queensferry was instrumental in reaching many of these businesses. There followed a formal twelve-week public consultation exercise to provide opportunities for local residents, local businesses, organisations, public bodies, visitors and others to comment on the nomination and management issues relating to the nominated property.

The consultation examined the proposals for nomination and management of the Site, highlighting the key issues, potential benefits, threats, opportunities and restrictions. A consultation questionnaire accompanied the document, and both were made available throughout the twelve week period and at public venues across the area, an online version being built into a website dedicated to the nomination at www.forthbridgeworldheritage.com. The consultation commenced on 20th May and concluded on 11th August 2013. Four drop-in sessions were arranged during the consultation period to enable the public to speak to officers about the proposals. These sessions were attended by 93 members of the public.

The response to the consultation was broadly very positive, with the overwhelming majority of online respondents welcoming the nomination of the bridge. Of those who were less confident about the perceived benefits of World Heritage inscription, most were also in favour, but were worried about potentially negative impacts upon the quality of life in the two communities.

Much of the concern in the online questionnaire focused on road infrastructure, parking, potential congestion and worsening traffic hazards. These were perceived by many to be problems that already exist, and so the World Heritage nomination was thought by some to be a good opportunity for the local authorities to take the initiative and propose solutions before the situation gets worse. There was a consensus that action needs to be taken as soon as possible, rather than waiting until inscription in 2015.

There are wider circles that sense a shared ‘ownership’ of the Forth Bridge beyond the immediate residents and businesses. Three will be mentioned here:

1. Travellers might cross the bridge just once or twice in their lives, and yet remember doing so, or they may be regular commuters depending on the bridge to sustain their way of life. Those who pass through Waverley Station had the opportunity to speak to officers of City of Edinburgh Council and Historic Scotland, and to pick up a postcard which directed people to the consultation online.

2. Photographers form communities that have captured it either as a one-off visit or over time watching it change through the seasons and from different viewpoints. This dispersed group can be approached online through relevant Flickr and meet-up groups. For example the “Forth Bridges” Flickr group has 714 members who combined to upload 4,360 photographs since January 2006. The Forth Bridge features strongly in other groups such as “Bridges of the World”, which has 7,373 members. 894 out of 72,216 photographs are tagged ‘Forth’, showing either the road or rail bridges. (both websites last accessed in November 2013).

3. Civil Engineers the world-over see the bridge as symbolic of the achievements of that profession. Two of the main organisations that bring these people together are the Institution of Civil Engineers, which has long been associated with the bridge through its support of the Forth Bridges Visitor Centre Trust, for example. The ICE Panel for Historical Engineering Works keeps informed of progress. The American equivalent ASCE has already awarded a Landmark plaque to the bridge.
Members of the Forth Bridges Forum (formed in November 2011) include Network Rail (the owner), Transport Scotland and Historic Scotland (Scottish Government Agencies), VisitScotland (the national tourism organisation), and Fife and City of Edinburgh Councils (the two local authorities) which have undertaken to support both the nomination of the bridge, and its subsequent management.

At a practical level, the bulk of the management and maintenance costs are already borne by Network Rail because the bridge will remain an operational railway viaduct. Network Rail has invested heavily in the bridge since it came into being, and recently completed a £130-million maintenance and painting programme over a ten-year period. This has left the structure in an excellent condition for the foreseeable future. It is therefore anticipated that longer-term maintenance will be far less of a burden than was previously the case, and will simply form part of the day-to-day management of the bridge.

£1 million is allocated per year for the maintenance of the bridge, and for the next five years on a five-yearly control period. These sums require to be declared to the Office of Rail Regulation.

Network Rail Business Plan. Network Rail’s business plan supports sustainable safe operation of all structures in delivering train paths for freight and passenger traffic. The Scottish interest in this includes major structures such as the Forth and Tay Railway Bridges. Funding is expected to maintain these in a manner that will allow trains to cross at agreed weights and speeds, though these do vary according to vehicle types involved.

Revenue Funding. The maintenance funds for the bridge structure come from the overall structures settlement for Scotland. Similarly the maintenance of the Railway Track elements is simply part of the overall in-house Permanent Way Maintenance Department. Funding is underwritten by the Scottish Government (via its agency, Transport Scotland), the UK Department for Transport, and Train Operator access payments. The mix of these is overseen by the Rail Regulator, the Office of Rail Regulation. This needs-based allocation offers a more flexible way for the operator of a large number of engineering assets to prioritise work than would any specific ring-fenced funding for the Forth Bridge. In practice a regular draw-down of funds occurs.

Recent Investment. Between 2001 and 2011, Network Rail has spent £130 million restoring the bridge and bringing its coating system up to a standard that should leave it in a prime condition for 20 years or more. The scale of this restoration project is unprecedented in the UK, and had a profound impact on those who were involved, as is captured in these words from (above) Iain Heigh, the project manager: “For many of the 1,600 men and handful of women who have worked on the restoration of the Forth Bridge over the last ten years, this has been a job that defined our careers. Few of us regarded it as just a job.” (Forth Bridge: Restoring an Icon, 2012)

Planned Investment. Network Rail is currently committed to approximately £1 million per annum for ongoing care and maintenance of the bridge structure for the next five years. In addition, there will be weekly maintenance of the track and fittings as part of the overall railway maintenance of the “permanent way” at further cost of approximately £0.2 million per annum. Approximately £0.2 million of this £1.2m is devoted to annual structural inspections, a ratio of around 1:6. Given the access issues that had plagued the bridge in the past, the better understanding of the fabric following the refurbishment work is paying dividends. As part of Network Rail’s stewardship following its major investment, it is developing maintenance plans into the very long term. It will, however, be many years before levels of investment similar to those in recent years are required again.

Sources and Levels of Finance

5.g Sources of Expertise and Training in Conservation and Management Techniques

The maintenance of the bridge requires a broad scope of expertise. This includes ‘Permanent Way’ (railway track etc.) teams from the UK, and had a profound impact on those were involved, as is captured in these words from (above) Iain Heigh, the project manager: “For many of the 1,600 men and handful of women who have worked on the restoration of the Forth Bridge over the last ten years, this has been a job that defined our careers. Few of us regarded it as just a job.” (Forth Bridge: Restoring an Icon, 2012)

Planned Investment

Network Rail is currently committed to approximately £1 million per annum for ongoing care and maintenance of the bridge structure for the next five years. In addition, there will be weekly maintenance of the track and fittings as part of the overall railway maintenance of the “permanent way” at further cost of approximately £0.2 million per annum. Approximately £0.2 million of this £1.2m is devoted to annual structural inspections, a ratio of around 1:6. Given the access issues that had plagued the bridge in the past, the better understanding of the fabric following the refurbishment work is paying dividends. As part of Network Rail’s stewardship following its major investment, it is developing maintenance plans into the very long term. It will, however, be many years before levels of investment similar to those in recent years are required again.

The Forth Bridge has over the years proved an invaluable learning resource to the engineers and contractors involved. They now know that what they tested at the Forth Bridge is applicable to other structures.

Sources of training in conservation for professional, technical and trades people:

• The Scottish Lime Centre Trust provides hands on and theoretical training in a range of conservation practices. It has recently launched training for civil and structural engineers. It is based at Charlestown on the north bank of the Forth Estuary, seven km from the Forth Bridge, and has been the principal location, since 1994, to promote for the public benefit the appropriate repair of Scottish traditional and historic buildings. It offers advice, training and practical experience in the use of lime for the repair and conservation of such buildings and furthers the preservation and development of Scottish building traditions, crafts and skills. See http://www.scotlime.org.

• A National Conservation Centre is planned by Historic Scotland to create a unique national and international hub in technical conservation for research and learning to ensure a sustainable future for the historic environment. Its base will be in Stirling, the lowest medieval crossing point of the River Forth. The base for Historic Scotland Buildings Conservation is a membership association for professional building conservation practitioners and historic environment specialists. See http://www.hbhc.org.uk.

• The Royal Incorporation of Architects in Scotland has an accreditation scheme for Conservation Architects, the RICS likewise has one for surveyors, and most relevant here, there is accreditation for engineers:

The Conservation Accreditation Register for Engineers (CARE) identifies civil and structural engineers skilled in the conservation of historic structures and sites. CARE is sustained by Institution of Civil Engineers and the Institution of Structural Engineers. Members have followed a rigorous approval procedure to confirm an appreciation of discipline-specific responsibilities extending well beyond their professional training as engineers and have demonstrated that they are fully conversant with conservation philosophy and methods applied to heritage projects.

Additionally, CARE has been established to:

• Assist clients in selecting an appropriate engineer with proven conservation experience.

• Encourage education and training in conservation engineering.

• Promote sympathetic and best practice conservation.

• Raise awareness of conservation in the engineering profession.

There are in (November 2013) 37 registered members across the UK and Ireland, with one in Scotland. The rate of increase in Scotland could be considered as a possible monitoring measure for the profile achieved by conservation engineering, helped by the symbolism of the Forth Bridge, and to show the pool available for long-term deployment of conservation engineering expertise available at the bridge. See http://www.careregister.org.uk.

“Civil engineering affects every aspect of people’s lives. It’s not just about creating the infrastructure we all depend on. It’s about transforming the way we work. The way we live. The way we think. So let’s make sure we never underestimate the impact of what we do. Because we must inspire the next generation of civil engineers…in my experience, it’s the iconic structures in our own regions that really capture people’s imagination – for example, The Forth Bridge.”

(Parliamentary Address of Professor Barry Clarke, President, ICE, 2012)
There is currently no public pedestrian access to the bridge, but plans to promote this are now being considered (see 4.6.4). At least three sponsored “abseils” take place from the Dalmeny (south) side every year in order to raise funds for charities like the Chest Heart and Stroke Association. Each of those participants will feel a special affinity for the bridge following those close and hair-raising encounters.

Many visitors are drawn by the bridges either to Queensferry and North Queensferry, despite no formal marketing of the bridge as a tourist attraction and at present no means of counting individual visitors. Yet it was already reported by Trip Advisor reviewers early in 2013 to be the third best visitor attraction in Fife. Now (December 2013), the first six being four golf courses, a beach and sky-diving. Not one of the more conventional heritage attractions ranked close to the Forth Bridge, Deep Sea World, a marine wildlife attraction beneath the Forth Bridge at North Queensferry, has at times attracted over 200,000 visitors per year.

The number of people who experience and interact with the bridge in their daily lives is very large indeed because that is the nature of a major and highly visible piece of infrastructure. It may be more useful to consider the quality of the interaction rather than sheer numbers of bridge users, but nonetheless the overall interaction of people who consider it in some way “their Bridge” is substantial. It could be said that the bridge is experienced by over 40 million people a year, based on the following assumptions:

- Road bridge drivers: 23,800,000 counting each vehicle on the road bridge as containing one person who will glance to the east, and adding,
- Road bridge passengers, cyclists and pedestrians, say 10,000,000 at a conservative estimate,
- Rail users: 3,600,000, assuming trains are below capacity at around 50 passengers in each train at 200 trains a day,
- Residents: 3,650,000, assuming that each resident within the bridgehead communities (10,000) steps out of their house or looks through a window once per day. Almost all will glimpse the bridge, many in fact multiple times. This disregards those who see it from a greater distance,
- Tour groups 100,000 (split between cruise ships and bus/boat tours).

This figure approaches that of the entire UK population and of course includes people who see it many times over in one year. It cannot be claimed that this number is taking that route in order to appreciate the bridge, but a momentary lifting of their spirits can be ascribed to many who experience it in this way.

Rail: Up to 200 passenger trains cross the bridge every day, meaning that it is experienced in that way approximately 3 million times per year. In many cases this will be repeat visits by commuters. The number of tickets bought to either Dalmeny or North Queensferry Stations might help to gauge numbers of people who choose the stations at either end of the bridge as destination, often for tourist purposes.

Road: The Forth Bridge cannot fail to be noticed by persons crossing the Forth Road Bridge. In 2012 there were 23,744,931 traffic movements, whereas in 2008 there were 21,408,383, an increase of 2 million within 4 years. Oddly, some 100,000 more vehicles travel south rather than north, which suggests that people naturally choose to travel in a clockwise direction, going north by routes to the west of the Forth. Counting is by means of a Weigh in Motion (WIM) station installed to monitor loading on that bridge. Plates in the carriageway capture and record the number and weight of vehicles as they drive over a sensor. The bridge is also used by cyclists and pedestrians, who are not counted but have a better opportunity to enjoy views. They will benefit when most road traffic is taken from the Forth Road Bridge to the Queensferry Crossing, and the middle bridge becomes a viewing platform. (Source: FETA, www.forthroadbridge.org)

In 2012 the station building at North Queensferry was leased from the train operating company, First Scotrail, by North Queensferry Station Trust for the purpose of restoration to its original condition. Support for the project was received from Transport Scotland and First Scotrail under the Stations Community Regeneration Scheme (SCR), Railway Heritage Trust, Fife Council and local volunteers.

The Trust expects to have Phase 1 of the refurbishment completed and ready for use by April 2014. It is planning to have the former ticket office used as a visitor information centre and the former general waiting room will be used again as a comfortable waiting room but also will be available for use privately by local community groups. The former ladies waiting room is to be used as a “Railway-themed exhibition” area

Residents and Local Visitors: The Forth Bridges Visitor Centre, opened in Queensferry in 2013 to convey information about all three bridges, as part of the outreach developed for the construction of the Queensferry Crossing. It contains models and displays of all three bridges, and is open to the public on advertised days like European Heritage Days and particularly for educational visits from schools.

There is a large viewing window onto the bridges, whilst the adjacent room houses a control centre managing traffic control and monitoring systems on Scotland’s trunk roads.

Tours: Boat Tours that use the bridge as a substantial part of the experience, even when the destination might be Inchcolm Island, wildlife or a general river cruise, include:

- Maid of the Forth
- The Forth Belle
- Seafari on Scotland’s trunk roads.

A “Forth Bridges Bus and Boat Tour” brings day visitors from Edinburgh, and Gray Line tours in offering tours from Edinburgh to the Highlands of Scotland guaranteeing a view of the Forth Bridges en route, generally from the Forth Road Bridge monument beside the Contact and Education centre. Both firms have images of the Forth Bridge prominently displayed on the sides of their coach. Exact visitor numbers are commercially sensitive, but it seems that numbers justiﬁy daily visits, and will be more frequent during the summer. This means several thousand visitors see the bridge as part of a general package visit to Scotland provided by these and other firms.

Tours on foot are offered by Queensferry Historic Walking Tours and others.

Cruise Ships: An estimated 45,000 passengers come to South Queensferry in 2013, generating more than £370,000 income. They landed from 21 ships that were too large to pass beneath the Forth Bridges. They moor just beside the bridge and transfer passengers to Hawes Pier, thus excluding local visitors from that car and coach park. The great bulk of the revenue that they bring is received elsewhere in Scotland, but “Cruise Forth” and Queensferry Ambition is working to develop the local offer both at Rosyth and Queensferry.

5h Visitor Facilities and Statistics
There are currently no co-ordinated policies and programmes relating to the property, but one of the principal aims of the Management Plan will be to address this situation through a number of actions.

In the meantime, as stated in 5.h above, existing initiatives include, for example the development at North Queensferry Station, and as outlined in 4.b.4, proposals for a visitor experience on the bridge by Network Rail. In addition, virtual access through digital presence on websites is increasing, and will be supplemented by the 3D outputs of digital laser-scan surveys of the bridge.

It is also likely that in the future the neighbouring Forth Road Bridge will play an increased leisure role, and serve to a greater extent than it already does as a viewing platform for the Forth Bridge.

If physical access to the bridge and prominent viewpoints nearby is to be achieved, there is some potential for conflict in the design of viewing platforms if placed on bridges, but these can be appropriately managed through the consents system that is in place for both the Forth Bridge and the Forth Road Bridge, both of which have the highest level of listed building protection.

Similarly, developments in the adjacent conservation areas must enhance or preserve the character of those areas.

There are concerns in the local communities that visitor numbers need to be appropriately managed, so as to secure local economic benefit whilst not damaging the residents’ ways of life. This, again, is therefore a topic for the Management Plan.

Should the property be inscribed, consideration needs to be given to the placing of the UNESCO and World Heritage logo at an appropriate location near to the bridge, and for the management of the plaques already fixed to it. It would also be desirable if ways were identified to promote the Outstanding Universal Value of the Forth Bridge in the context of “bridges of the world” through various media.

The numbers vary and many, particularly in Network Rail, are dedicated to other structures as well as the bridge. However, in summary, there are carrying out on-going care and maintenance to the bridge:

- approximately six people involved through routine Permanent Way Maintenance teams
- approximately eight engineers/project management staff from Network Rail
- a further four staff involved through Bridge examination contracts, and
- approximately 20 more people involved full-time from Network Rail’s principal contractor, Balfour Beatty
Section 6 – Monitoring

Monitoring the State of Conservation

6.a Key Indicators for Measuring State of Conservation

In accordance with Article 29 of the World Heritage Convention, the Department for Culture, Media and Sport, must on behalf of the United Kingdom Government produce periodic reports on the legislative and administrative provisions and state of conservation of the World Heritage Site. They will be undertaken within the six-year time scale of the World Heritage Convention periodic reporting exercise and guided by best practice. The results will be used to assess the implementation of the Strategic Action Plans detailed in Section 7 of the Management Plan.

Key indicators are established in the Management Plan for measuring quantitatively and qualitatively the state of conservation of the Forth Bridge. A principal means of achieving this will be via Network Rail’s CARRS (Civil Asset Register and electronic Reporting System system), which is tailored to the maintenance and monitoring needs of the Forth Bridge. In addition, the company has an asset management plan which is currently under full review, in line with Network Rail’s Strategic Major Structures Policy (programmed for 2013/2014).

This will include annual care and maintenance budget statements along with assessment for the need for theoretical major works based on the expected serviceable lifespan of the new protective coating systems recently applied to the bridge as part of the restoration project.

CARRS was developed as a structures asset management system to operate at a national level, allowing Network Rail to replace the multiple local systems previously in operation throughout the network, thus having a single view of the national structures asset portfolio. The CARRS system is a work flow system which holds records in a common format (file/folder) providing the ability to schedule and receive updates of examination reports electronically into a supporting document management system and also allow for the electronic sign off of reports that will generate work items which can be exported to the people and organisations responsible for carrying out the work.
Network Rail’s CARRS ensures that each part of the bridge is programmed to be inspected and works prioritised according to their urgency. Each section of the bridge is colour coded, as above. It has a time-span appropriate to the cycle of attention needed at each part. Copied above is a sample page referring to the work recently done to that part of the bridge, the Fife cantilevers and pier. It shows that this area had some paintwork done by the old, but not original, five-coat Alkyd system. Those areas will therefore be the first to be recoated by the system applied elsewhere on the bridge in the last decade. More generally, Network Rail routinely reports asset conditions to the Office of Rail Regulation, and the Partnership Management Agreement provides a means by which local authorities, in certain cases consulting Scottish Ministers, will be able to monitor change to the bridge. A baseline resource from which to monitor change is given by the photographic surveys and collections in the National Records of Scotland, Historic Scotland and the Royal Commission on the Ancient and Historical Monuments of Scotland, to name but a few. See full list at 7.

In partnership with the Glasgow School of Art, the creation of a 3D digital model through detailed and extremely accurate laser scanning technology is also being investigated, with the aim of providing a baseline survey and data set. A pilot survey was completed with excellent results in August 2013, and a complete survey of the bridge is being considered as an action of the Management Plan.

Other indicators will be less within the purview of Network Rail. The main soft indicator (one capable of fluctuating in a meaningful way) for cultural heritage is the number of assets within the bridgehead zone that are on the Buildings at Risk Register. At the time of writing (2013), that figure is one: the Railway Pier at North Queensferry. But should there be a large increase in buildings at risk and are more normal building types - houses, shops - that would be an indication that all was not well in the economy of those places.

The Business Improvement District operated by Queensferry Ambition will be an invaluable resource for measuring the economic performance of that town. Currently one former restaurant is closed and boarded up, because a chain of public houses went into liquidation for reasons beyond local control.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Periodicity</th>
<th>Location of Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Buildings on the Buildings at Risk Register (BARR)</td>
<td>Updated all the time but could be reviewed annually</td>
<td>RCAHMS</td>
</tr>
<tr>
<td>BARR churn</td>
<td>Updated all the time but could be reviewed annually</td>
<td>RCAHMS</td>
</tr>
<tr>
<td>Enhancement of or harm to key views by foliage or new development</td>
<td>Six monthly fixed point photography (winter and summer will give different results)</td>
<td>Historic Scotland. Local authorities monitor.</td>
</tr>
<tr>
<td>Train tickets sold to North Queensferry and Dalmeny</td>
<td>Annual. Shows those who make the Queensferry their destination by public transport, as opposed to the starting point for commuters</td>
<td>ScotRail</td>
</tr>
</tbody>
</table>
6.b Administrative Arrangements for Monitoring the Property

The nominated property is a single structure which is an important part of an operating national railway network. The constant monitoring of its condition is therefore a statutory requirement, with Network Rail routinely reporting to the Office of Rail Regulation.

This means that a rigorous condition monitoring mechanism is already in place, and can be harnessed through the Civil Asset Register and electronic Reporting System (CARRS), and through the Partnership Management Agreement Group’s (PMA Group) regular meetings and reporting process. This in turn will, from 2014 onwards, integrate with the activities of the Steering Group, which will be charged with taking forward and monitoring progress relating to the actions identified in the Management Plan.

The Steering Group will therefore depend on the PMA Group for information on activities directly affecting the property, and will collate regular summaries of works undertaken and any changes to the condition of the property, together with potential future change.

Annual Reports by the Steering Group will draw together this data and information from other sources (including other stakeholders within the Group). This will be used to satisfy the needs of UNESCO’s periodic reporting cycle, which requires a formal report every six years.

At present, following the extensive restoration project, the property is in exceptionally good condition, and this will be an excellent baseline position from which to monitor change.

Contact:
Forth Bridge World Heritage
Steering Group
Forth Bridges Forum Secretariat
Transport Scotland
Buchanan House
58 Port Dundas Road
Glasgow G4 0HF
Scotland

6.c Results of Previous Reporting Exercises

In 1995 the UK Health and Safety Executive (HSE) investigated the condition of the bridge. Historic Scotland observed that exercise - its architect, John Knight, joined inspections at that date, and expert engineering input was by consulting engineers Pell Frischmann. It was concluded then that “The bridge has a sufficient structural integrity to give an acceptable level of safety.” HSE made a number of recommendations for on-going monitoring on the basis of the hazard log that was developed at that time. See sample extract above (at 6.a) from CARRS by Network Rail for the current monitoring system implemented to achieve this.
7a Photographs, Slides, Image Inventory and Authorisation Table and Other Audiovisual Materials

<table>
<thead>
<tr>
<th>Id No.</th>
<th>Format</th>
<th>Caption</th>
<th>Date of Photo (m/yr)</th>
<th>Photographer</th>
<th>Copyright Owner</th>
<th>Contact Details of Copyright Owner on Page</th>
<th>Non-Exclusive Cession of Rights</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>JPEG</td>
<td>View of Forth Bridge from South Queensferry, dpfb091012047</td>
<td>11/12</td>
<td>Duncan Peet</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>JPEG</td>
<td>Forth Bridge from South Queensferry, dpfb201112015</td>
<td>11/12</td>
<td>Duncan Peet</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>JPEG</td>
<td>Forth Bridge from Forth Road Bridge, North Queensferry, dpfb271112010</td>
<td>11/12</td>
<td>Duncan Peet</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>JPEG</td>
<td>Union of South Africa crossing the Forth Bridge, dpfb210413_027</td>
<td>04/13</td>
<td>Duncan Peet</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>JPEG</td>
<td>Union of South Africa crossing the Forth Bridge, dpfb310413_028</td>
<td>04/13</td>
<td>Duncan Peet</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>JPEG</td>
<td>Blackness Castle with the Forth Bridge in the background, dpfb301012013</td>
<td>11/12</td>
<td>Duncan Peet</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>JPEG</td>
<td>Forth Bridge from Carlingnose nature reserve, North Queensferry, dpfb091012035</td>
<td>10/12</td>
<td>Duncan Peet</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>JPEG</td>
<td>View from North Queensferry of a train crossing the Forth bridge, dpfb210413_016</td>
<td>10/12</td>
<td>Duncan Peet</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>JPEG</td>
<td>Forth Bridge from Ferryhills, North Queensferry, dpfb091012039</td>
<td>10/12</td>
<td>Duncan Peet</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>JPEG</td>
<td>Detail of North Queensferry cantilever with North Queensferry station in the background, DSC_3630</td>
<td>07/13</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>JPEG</td>
<td>Top Girder looking towards North Queensferry Station, DSC_3640</td>
<td>07/13</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>JPEG</td>
<td>View from Forth Bridge looking towards South Queensferry, DSC_3655</td>
<td>07/13</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>JPEG</td>
<td>View from Forth Bridge looking towards South Queensferry, DSC_3690</td>
<td>07/13</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>JPEG</td>
<td>Detail of central suspended span, DSC_3717</td>
<td>07/13</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>15</td>
<td>JPEG</td>
<td>Detail of suspended central span and navigation light on Bouch bridge pier, DSC_3652</td>
<td>08/12</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>16</td>
<td>JPEG</td>
<td>View through high girder of Train crossing the Forth Bridge, DSC_3660</td>
<td>07/13</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>17</td>
<td>JPEG</td>
<td>Detail showing Forth Bridge walkway beneath the permanent way, DSC_3786</td>
<td>08/12</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>18</td>
<td>JPEG</td>
<td>View from the north of the Inchgarvie Tower of the top of the Forth Bridge, DSC_3714</td>
<td>03/13</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>19</td>
<td>JPEG</td>
<td>The North Queensferry tower looking towards South Queensferry, DSC_0903</td>
<td>08/12</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>20</td>
<td>JPEG</td>
<td>Train crossing the Forth Bridge, DSC_3728</td>
<td>07/13</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>21</td>
<td>JPEG</td>
<td>View from the south of the Forth Bridge looking towards South Queensferry, DSC_3935</td>
<td>08/12</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>22</td>
<td>JPEG</td>
<td>Forth Bridge, Queensferry cantilever arm, DSC_3776</td>
<td>08/12</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>23</td>
<td>JPEG</td>
<td>Detail of cantilever and rivets, DSC_3780</td>
<td>08/12</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>24</td>
<td>JPEG</td>
<td>Forth Bridge Fife skewback detail, DSC_3739</td>
<td>08/13</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>25</td>
<td>JPEG</td>
<td>Forth Bridge Detail of final hand painting of rivets</td>
<td>2011</td>
<td>Unknown</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>26</td>
<td>JPEG</td>
<td>The Forth Bridge and Albert Hotel in North Queensferry, DSC_3758</td>
<td>07/13</td>
<td>Miles Ogilthorpe</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>27</td>
<td>JPEG</td>
<td>Forth Bridge from Fife Coastal Path, Carlingnose, North Queensferry, dpfb91012033</td>
<td>10/12</td>
<td>Duncan Peet</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>28</td>
<td>JPEG</td>
<td>The Forth Bridge from South Queensferry, dpfb91012046</td>
<td>10/12</td>
<td>Duncan Peet</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>29</td>
<td>JPEG</td>
<td>Train crossing Forth Bridge from Fife Coastal Path, Carlingnose, North Queensferry, dpfb310413_002</td>
<td>04/13</td>
<td>Duncan Peet</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
<tr>
<td>30</td>
<td>JPEG</td>
<td>The Forth Bridge from North Queensferry, dpfb271112006</td>
<td>11/12</td>
<td>Duncan Peet</td>
<td>Historic Scotland</td>
<td>Page 136</td>
<td>Yes</td>
</tr>
</tbody>
</table>
7.b Texts Relating to Protective Designation, Copies of Property Management Plans or Documented Management Systems and Extracts of Other Plans Relevant to the Property

Scottish and UK Government Legislation
- Ancient Monuments and Archaeological Areas Act 1979
- Forth Bridge Railway Act 1873
- Planning (Listed Buildings and Conservation Areas) (Scotland) Act 1997
- Planning (Scotland) Act 2006
- Historic Environment (Amendment) (Scotland) Act 2011
- Nature Conservation (Scotland) Act 2004

Scottish Government Policy and Guidance Planning Policy Guidance / Statements
- National Planning Policy Guidance (NPPG) 18
- Planning Advice Note (PAN) 2 / 2011 Planning and Archaeology
- Planning and the Historic Environment and Planning Advice Note (PAN) 7 / Planning for Transport (DPMTAG)
- Scottish Planning Policy (SPP) Available at: www.scotland.gov.uk/planning

Local Authority Policy and Publications
City of Edinburgh Council
- Guidance for Listed Buildings and Conservation Areas
- Edinburgh Built Heritage Strategy
- The Rural West Edinburgh Local Plan (RWELP) 2006
- Edinburgh Local Development Plan
- Fife Council
- Dunfermline & West Fife Local Plan, November 2012
- Action Programme, April 2013
- Onshore Wind Energy Strategy for Fife 2012
- West Lothian Council
- Strategic Development Plan, 2013
- West Lothian Local Development Plan Scheme No.5.A, 2013

Conservation Area Appraisals

Other
- Firth of Forth Site of Special Scientific Interest: Site Management Statement
- Network Rail: Full strategic business plan for Scotland
- Network Rail. Route Plans: Scotland

7.c Form and Date of Most Recent Records or Inventory of the Property

The most up-to-date records of the property are maintained by Network Rail as part of its routine maintenance regime. However, the Royal Commission on the Ancient and Historical Monuments of Scotland (RCAMHS) has regularly updated its photographic records of the bridge, especially prior to and following the centenary celebrations in 1990. A significant proportion of this coverage is from the air.

Most recently, Transport Scotland and Historic Scotland have jointly funded a pilot laser scanning project, the aim of which was to test the possibility of creating a detailed and extremely accurate record in the form of a digital 3D model. If successful, the data would have a use in the long-term conservation of the bridge by virtue of creating an immensely detailed baseline record. It could also be used to generate sophisticated digital interpretation for the benefit of actual and virtual visitors. The survey used digital technologies that have been developed as part of the Scottish Ten project, which is recording all five of Scotland’s existing World Heritage sites, and another five sites around the world.

Initial results from the work on the Forth Bridge, which was completed in August, suggest that such a survey for the whole structure is technically possible and potentially more affordable than had been anticipated. The intention is therefore to raise the funds required to survey the entire Bridge.
7.d
Addresses Where Inventory, Records and Archives are Held

7.d.1
Principal Sources of Archival Material

Centre for Architecture, Montreal
- Collection of Evelyn Carey photographs and photomechanical prints

Glasgow City Archive
- Sir William Arrol & Co Ltd Collection, 1884 – 1951 (Including Forth Bridge)
- Correspondence of J. Parker Smith: Letter from William Arrol, Dalmarnock Iron Works, Bridgeton, to James Parker Smith about proportion of wages to total cost of Tay and Forth Bridges
- Forth Bridge: Plans, Technical Drawings & Special Drawings
- Coloured plans of general arrangements of cantilever tube riveting machines and cages
- Full scale detailed drawings of machinery
- ‘The Forth Bridge’, in its various stages of construction and compared with the most notable bridges of the world
- Cash books 1887-1915

Historic Scotland
- Photographic survey 2012 & 2013
- List descriptions and designation files

Imperial College, London
- Evelyn Carey Collection of Photograph Albums and Glass Slides
- Forth Bridge Blueprints
- Forth Bridge painting by William Wyllie
- Phillips, P., 1890. The Forth Bridge in its various stages of construction and compared with the most notable bridges of the world. Edinburgh: Grant. (Various Editions)
- British Rail: Evelyn Carey Collection. Glass plate negatives mostly showing stages of construction of Forth Bridge
- Original plans

National Records of Scotland
- Photographs and drawings of Forth Bridge Works 1884 – 1885
- Records of British Railways Board 1845 – 1999
- Forth Bridge Railway Acts
- Minutes of Board and General Meetings (Copies)
- Also contains copies of Agreements; Reports & Accounts; Acts of Parliament of 1873, 1876, 1878 and 1882; and Diagrams of Forth Bridge - 1891
- Minute of Agreement between Forth Bridge Railway and William Arrol & Co.
- Notebooks containing engineer’s notes and calculations etc during construction of Forth Bridge
- Album, consisting of 49 monochrome photographs from 1894

Network Rail Online Archive
- 1988 Plans, elevations and details

Royal Commission on the Ancient and Historical Monuments of Scotland (RCAHMS)
- RCAHMS Photographic Survey
- RCAHMS Aerial Photographic Survey
- Inglis Collection (Photographs)
- Ian G. Lindsay Collection (Photographs)
- Collection of photographs by Eric De Maré
- Donated Private Collections
7.e Bibliography

7.e.1 Literature Concerned with the Nominated Property and its Builders

Books:
- Oman, C., 1931. The First Forth Bridge, A. O. 209. Reprinted from the Numismatic Chronicle. [s.n.].
- Phillips, P., 1980. The Forth Bridge in its various stages of construction and compared with the most notable bridges of the world. 2nd ed. Edinburgh: Grant.
- Schoolbred, J. N., 1885. Electric lighting at the Forth Bridge works. London: [s.n.].British Association for the Advancement of Science.

7.e.2 Contemporary Published Sources

Books, Journals/Articles
- Phillips, P., 1890. The Forth Bridge in its various stages of construction and compared with the most notable bridges of the world. 2nd ed. Edinburgh: Grant.
- Schoolbred, J. N., 1885. Electric lighting at the Forth Bridge works. London: [s.n.].British Association for the Advancement of Science.
- The Times, 1880. The Tay Bridge Disaster. (29925): 5.5 July 1880.
- Westhofen, W., 1899. The Forth Bridge Centenary Edition first published as a supplement to Engineering Magazine in 1890. London: Engineering,
7.4.3 Contextual Literature Concerned with Comparable Bridges

- American Society of Civil Engineers. Firth of Forth Railway Bridge. Available at: http://www.asce.org/People-and-Projects/Projects/Landmarks/Firth-of-Forth-Railway-Bridge/ [accessed October 2013]
- Forth Road Bridge http://forthroadbridge.org/home [accessed November 2013]
- Institute of Civil Engineers http://ice-news/historic-bridge-and-infrastructure-awards-2013 [accessed October 2013]
Glossary

Abutment
That part of a pier from which an arch springs, sustaining one end of a bridge span and at the same time supporting the embankment which carries the track or roadway.

Attributes
Aspects of a property which are associated with or express the Outstanding Universal Value. Attributes can be tangible or intangible.

Authenticity
Those characteristics that most truthfully reflect and embody the cultural heritage values of a place, rooted in its specific cultural context.

Bearing
Something that supports weight at the end of an arch or beam that rests on a support. A bearing shoe is a device that supports, guides, and reduces the friction of motion between fixed and moving parts.

Buckie (Scots)
Shelter for workforce on the Forth Bridge, or a whelk in Scots. From the Latin buccinum for horn-shaped shellfish, so suitably a small hard shelter clinging to a larger thing. It is also applied to a beverage and to a town in Moray in the north east of Scotland.

Caisson
A watertight casing used in founding and building structures in water that is too deep for cofferdams.

Cantilever
A structure at least one portion of which acts as an anchorage for sustaining another portion which projects beyond the supporting pier.

CARRS
Civil Asset Register and electronic Reporting System—a work flow system which holds records in a common format allowing Network Rail to schedule and receive updates of examination reports that will generate work.

Cast Iron
Iron whose shape is produced by pouring liquid metal into moulds. Strong in compression, as an arch or pillar, and can be decorative.

Cofferdam
A watertight enclosure pumped dry of water to allow construction work to take place below the waterline, as when building bridges.

Conservation
Action to manage change that secures the cultural significance of buildings, artefacts, natural resources or anything of acknowledged value to the past.

Conservation Area
Area of special architectural or historic interest, the character or appearance of which it is desirable to preserve or enhance.

Design
Concept of a building or artefact. It can exist as an abstract in the mind, on paper or it can be represented in the building or artefact if realised. Physical material of which a building or artefact is made.

Fabric
A measure of the wholeness and intactness of the natural and/or cultural heritage and its attributes.

Intervention
Any action which has a physical effect on the fabric of a building or artefact.

Listed Building
Building of special architectural or historic interest that has been afforded legal protection.

Maintenance
The periodic inspection and care of the fabric of an object, with routine attention and cyclical replacement of parts to defects as they occur.

Management
Activities appropriate for maintaining a place and the coordination of the various actions and stakeholders that this requires.

Mild Steel
A refined alloy of iron and less than 0.3% carbon, cheap and malleable, used in construction and manufacturing without further special treatment.

North Queensferry
Village in Fife within Inverkeithing Parish.

Open-Hearth Steel
Metal formed of pig iron, iron or steel scrap, which is converted into steel by the direct action of an oxidizing flame in a regenerative gas furnace. Also “Acid Open-Hearth”. Cultural and/or natural significance which is so exceptional as to transcend national boundaries and to be of common importance for present and future generations of all humanity.

Preservation
Action to keep “as found” a building or artefact, whether by historical accident or through a combination of protection and active conservation.

Protection
The provision of legal restraints or controls on the destruction or damaging of buildings ... sites, areas or other things of acknowledged value, with a view to their survival for the future.

The Property
The nominated site: the place, area of land or sea that has Outstanding Universal Value.

Pylon
Greek term for a monumental gateway of an Egyptian temple consisting either of one or two quadrilateral masonry masses with sloping sides pierced by a doorway. Or a steel tower carrying high-tension electricity cables.

Queensferry
Burgh in City of Edinburgh, formerly West Lothian County, also known (incorrectly) as South Queensferry. Wetlands designated under the Convention on Wetlands of International Importance, signed in Iran in 1971.

Reconstruction
Re-establishment of what existed in the past, on the basis of documentary or physical evidence.

Record
The description, depiction and analysis of a place using drawings, survey photographs and any other suitable means as well as the preservation of documents, photographs and other material relating to the place in its present or earlier condition.

Repair
Work beyond the scope of regular maintenance to remedy defects, significant decay or damage caused deliberately or by accident, neglect, normal weathering or wear and tear, the object of which is to return the building or artefact to good order, without alteration or restoration.

Reversibility
Rod of metal used to splice together sheets of wrought iron or steel by heat and hammers while hot via pre-bored or drilled holes.

Setting
The surroundings in which a place is experienced. The sum of the cultural or natural values of a place, often set out in a statement of significance.

Skewback
The intersection of the tubular struts at the base of the cantilevers (see photograph on page 88).

Stabilisation
The prevention of on-going degradation by removal of, or protection from, adverse conditions. Capable of meeting present needs without compromising the ability to meet future needs.

Suspended Span
A span connecting two cantilever arms and supported wholly thereby.

Sustainable
Providing structural adequacy. A mixture of iron and slags produced by direct reduction in a charcoal furnace or by puddling in a reverberatory furnace, then rolled. Strong in tension, as in a girder, and has a laminated structure.

Strengthening Wrought Iron
A roadway suspended from towers by chain or wire cables, securely attached to abutments.

Sources:
- http://www.icomos.org/~fl eblanc/documents/terminology/doc_terminology_e.html#C
- 85 Glossary

7.f Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abutment</td>
<td>That part of a pier from which an arch springs, sustaining one end of a</td>
</tr>
<tr>
<td></td>
<td>bridge span and at the same time supporting the embankment which carries</td>
</tr>
<tr>
<td></td>
<td>the track or roadway.</td>
</tr>
<tr>
<td>Attributes</td>
<td>Aspects of a property which are associated with or express the Outstanding</td>
</tr>
<tr>
<td></td>
<td>Universal Value.</td>
</tr>
<tr>
<td>Authenticity</td>
<td>Those characteristics that most truthfully reflect and embody the cultural</td>
</tr>
<tr>
<td></td>
<td>heritage values of a place, rooted in its specific cultural context.</td>
</tr>
<tr>
<td>Bearing</td>
<td>Something that supports weight at the end of an arch or beam that rests</td>
</tr>
<tr>
<td></td>
<td>on a support. A bearing shoe is a device that supports, guides, and reduces</td>
</tr>
<tr>
<td></td>
<td>the friction of motion between fixed and moving parts.</td>
</tr>
<tr>
<td>Buckie (Scots)</td>
<td>Shelter for workforce on the Forth Bridge, or a whelk in Scots. From the</td>
</tr>
<tr>
<td></td>
<td>Latin buccinum for horn-shaped shellfish, so suitably a small hard shelter</td>
</tr>
<tr>
<td></td>
<td>clinging to a larger thing. It is also applied to a beverage and to a town</td>
</tr>
<tr>
<td></td>
<td>in Moray in the north east of Scotland.</td>
</tr>
<tr>
<td>Caisson</td>
<td>A watertight casing used in founding and building structures in water that</td>
</tr>
<tr>
<td></td>
<td>is too deep for cofferdams.</td>
</tr>
<tr>
<td>Cantilever</td>
<td>A structure at least one portion of which acts as an anchorage for</td>
</tr>
<tr>
<td></td>
<td>sustaining another portion which projects beyond the supporting pier.</td>
</tr>
<tr>
<td>CARRS</td>
<td>Civil Asset Register and electronic Reporting System—a work flow system</td>
</tr>
<tr>
<td></td>
<td>which holds records in a common format allowing Network Rail to schedule</td>
</tr>
<tr>
<td></td>
<td>and receive updates of examination reports that will generate work.</td>
</tr>
<tr>
<td>Cast Iron</td>
<td>Iron whose shape is produced by pouring liquid metal into moulds. Strong</td>
</tr>
<tr>
<td></td>
<td>in compression, as an arch or pillar, and can be decorative.</td>
</tr>
<tr>
<td>Cofferdam</td>
<td>A watertight enclosure pumped dry of water to allow construction work to</td>
</tr>
<tr>
<td></td>
<td>take place below the waterline, as when building bridges.</td>
</tr>
</tbody>
</table>
Section 8 – Contact Information

8.a Preparer
Forth Bridges Forum

8.b Official Local Institution/Agency
Historic Scotland

8.c Other Local Institutions
Network Rail
Transport Scotland
Fife Council
City of Edinburgh Council
Queensferry & District Community Council
North Queensferry Community Council
Newton Community Council
Queensferry Ambition
Visit Scotland

8.d Official Web Address
www.forthbridgeworldheritage.com

Bid Leaders:
Historic Scotland
Longmore House
Salisbury Place
Edinburgh EH9 1SH
Scotland
Tel: +44 (0) 131 668 8600
Fax: +44 (0) 131 668 8722
Email: Miles.Oglethorpe@scotland.gsi.gov.uk

Editorial Team:
Mark Watson
Miles Oglethorpe
Mari McKee
Ian Heigh
Alastair Fyfe

View looking north at deck level within the Fife tower, shortly after completion of the restoration project, October 2012. (© Crown Copyright reproduced courtesy of Historic Scotland. www.historicscotlandimages.gov.uk, Miles Oglethorpe, DSC_8566)
The Forth Bridge: Second Place of the Contemporary Category, Transport Scotland Forth Bridge Photographic Competition, taken by Nigel Darling, April 2013. (© Nigel Darling, Forth Bridge Photo Competition Finalist, Nigel Darling FBPC0018)
Eleven key organisations within the Forth Bridge World Heritage Nomination Steering Group gave constant support towards this nomination. They are, in alphabetical order:

Members of the Steering Group

City of Edinburgh Council
Fife Council
Forth Estuary Transport Authority (FETA)
Historic Scotland
Network Rail
North Queensferry Community Council
North Queensferry Heritage Trust
Queensferry Ambition
Queensferry & District Community Council
Scottish Government Historic Environment Policy Unit
Transport Scotland
Visit Scotland

In addition, thanks are due to a number of people and organisations without whom the development of this nomination dossier and management plan would have been impossible. These include:

The Editorial Team

Alastair Fyfe
Ian Heigh
Mari McKee
Miles Ogilthorpe
Mark Watson

Members of the Forth Bridges Forum World Heritage Nomination Steering Group

Craig Bowman (Network Rail)
Diane Brown (Queensferry Ambition)
Andrew Burke (HEPU, Scottish Government)
Raymond Conville (Transport Scotland)
Campbell Docherty (Brickwork Communications Ltd)
Mary Finlayson (North Queensferry Community Council)
Carron Flockhart (Transport Scotland)
Alastair Fyfe (Chair, Transport Scotland)
Will Garrett (City of Edinburgh Council)
Keith Giblett (Queensferry & District Community Council)
Ian Heigh (Network Rail)
Lynn Hoey (Fife Council)
Rachel Haworth (City of Edinburgh Council)
Stacey Ingram (Transport Scotland)
James Lawson (North Queensferry Heritage Trust)
Mark Lawson (Historic Scotland, and Scotland Office)
Iain Mitchell (North Queensferry Community Council)
Gordon Morrison (Visit Scotland)
Miles Ogilthorpe (Historic Scotland)
Richard Pinn (Visit Scotland)
Douglas Speirs (FIFE Council)
David Thomson (Transport Scotland)
Chris Waite (FETA)
Mark Watson (Historic Scotland)

In addition to those mentioned above, many other people and...
Organisations have contributed to the preparation of the nomination, a selection of whom are listed below, some individually, and some by institution.

Balfour Beatty
John Andrew

The Big Partnership
Alan Buchan

The Briggers
Frank Hay
Jenni Meldrum
Len Saunders
James Walker
Elspeth Wills
Gordon Muir

City of Edinburgh Council
Euan McMeeken
Duncan Robertson
Jenny Bruce
Alison Morris
Audrey Primrose
Gilly Johnston
Saty Kaur
Staff of Queensferry High School

English Heritage
Keith Falconer
Christopher Young

Fife Council
Alastair Hamilton
Staff of Inverkeithing High School

Glasgow School of Art, Digital Design Studio
Alastair Rawlinson

Historic Scotland
Vanessa Gonzales
Laura Hindmarch
Dorothy Hoskins
Jennifer Johnston Watt
Elizabeth McCrone
Lesley Macinnes
Chris McGregor
Alasdair McKenzie
John MacNeil
Michal Michalski
David Mitchell
Lisa Nicholson
Duncan Peet

ICOMOS UK
Peter Marsden

Institution of Civil Engineers
Mike Chrimes
Carol Morgan
Robert McWilliam
Gordon Masterton
Roland Paxton

National Records of Scotland
David Brown
Linda Ramsay

Network Rail
Sandra Hebenton
David Simpson
Duncan Sooman

Rebanks Consulting Ltd
James Rebanks
Mike Clarke

The Royal Commission on the Ancient and Historical Monuments of Scotland
John R Hume
Miriam McDonald

Scottish Government, Historic Environment Policy Unit
Andrew Burkle
David Fleetwood
Andrew Fleming
Luke Wormald

Stand
Emma Chassels
Claudine Cockburn

UK Government, Department of Culture, Media & Sport
Francesca Conlon

Transport Scotland
Graham Porteous

West Lothian Council
Sarah Collings

Laura Shaw
James Steel
Ian A G Thomson
Lyn Wilson
Alice Wylie

The Forth Bridge from Dalmeny Station at night: First Place of the Contemporary Category, Transport Scotland Forth Bridge Photographic Competition, taken by Grant Ritchie, February 2013. (© Grant Ritchie, Forth Bridge Photo Competition Winner, Grant Ritchie FBPC0022)
The Forth Bridge
Nomination for Inclusion in the World Heritage List
Management Plan
Many would argue that the World Heritage listing of the Forth Bridge is long overdue, and others mistakenly believe that it is already a World Heritage Site. Add to this the fact that the bridge will in 2015 see its 125th birthday, and that it is in as good condition as it has ever been after a massive restoration project, and it becomes clear that this is an excellent time to be putting forward a nomination for World Heritage inscription.

With this in mind, we, the lead organisations within the Forth Bridges Forum, are delighted to be able to take forward this World Heritage nomination. There is, in addition, the added excitement of the neighbouring Forth Road Bridge reaching its 50th anniversary in 2014, and the prospect of the completion of the new Queensferry Crossing in 2016. Three consecutive years from 2014 to 2016 will therefore celebrate major engineering achievements spanning three centuries, and the aspiration is that World Heritage inscription in 2015 will provide a major focus within this celebratory festival period, providing a solid foundation for the future conservation and promotion of the Forth Bridge.

There is no doubt that the Forth Bridge is hugely important for Fife, the City of Edinburgh, Scotland, and for the UK, both as a major piece of operational transport infrastructure, and as an icon of a great industrial age. The bridge has now been operating for 124 years, a fact which demonstrates beyond doubt the success of its design, which was born in the most difficult circumstances – the aftermath of the Tay Bridge disaster. It is also a testament to the quality of the maintenance regimes and staff of the various railway companies and contractors that have cared for the bridge over the last twelve and half decades. The fact is, especially following the most recent period of investment and restoration, the bridge is in remarkably good condition, and with the help of this Management Plan, should remain so for many decades to come.

Whilst potential inscription of the Forth Bridge will not itself impact on its operational function as an essential part of the UK’s mainline rail network, it is likely to have a significant effect upon the areas adjacent to each end of the bridge, and potentially on the region, Scotland and the UK more generally. The bridge is already a tourist attraction in its own right, and the publicity generated by potential inscription as a World Heritage Site has the potential to attract many more visitors and create challenges and opportunities for the adjacent communities in Fife, Edinburgh and the Lothians. This Management Plan will therefore seek to identify ways in which the benefits of inscription can be maximised beyond the management and care for the bridge itself, whilst also considering ways of minimising or preventing some of the problems that might ensue as a consequence of an increase in visitors to the area. It will also look beyond the regional confines of the bridge and its setting, and consider wider benefits that may ensue, not least in the context of education and skills, and in the promotion of engineering amongst our younger generations in particular.

This Management Plan is being implemented with the assistance of many partner organisations and local people. It is encouraging that the nomination has received such strong support from the public and all the member organisations of the Forth Bridge World Heritage Steering Group, and we very much look forward to working together over the next six years to ensure both the successful management of the Forth Bridge itself, and the impact of inscription more broadly, should the nomination be successful.
It gives me immense pleasure as Chair of the Forth Bridges Forum to play my part in promoting the nomination of the Forth Bridge for inclusion in the World Heritage List. As the major stakeholder organisation championing the interests of the communities and businesses that are situated around the Forth Bridges, it is more than appropriate that the Forum is playing such a vital role not only in the nomination, but also in the subsequent planning process that will be so vital if the benefits of inscription are to be fully realised.

To achieve this ambition, the Forum has invested considerable time and energy in developing this Management Plan, which is a live document that will evolve over time as opportunities and challenges emerge in the coming years. I have been delighted to be able to contribute to this process, and look forward to maintaining the support of the Forum for the duration of the Plan, and if the opportunity arises, for subsequent plans also.

At a personal level, and as a Chartered Civil Engineer and member of the Institution of Civil Engineers, I am especially thrilled that the Forth Bridge now stands a good chance of being properly recognised for being the extraordinary, awe-inspiring structure that it is. There is nothing else like it, and I truly believe it has the power to enthuse and inspire new generations of engineers across the world.
The Function of the Management Plan

This Management Plan has been developed to support the future management needs of the property, to coordinate the interests of associated organisations, groups and individuals, and to maximise the benefits that might ensue from inscription whilst minimising any negative impacts that might also arise. The process of developing this Plan has been led by the Forth Bridges Forum, which includes Network Rail as the owner of the property. The preparation of the Management Plan has been overseen by the World Heritage Nomination Steering Group (known as the ‘Steering Group’), a sub-group of the Forth Bridges Forum, and has also drawn on information gathered through a 12-week public consultation, which included four public meetings incorporating workshop sessions in the local communities. As a consequence, the Management Plan has assimilated the views of local people who are likely to be most affected by inscription as well as baseline information on the current condition of the property, maintenance and monitoring programmes, together with anticipated pressures and threats that may emerge during the period of the plan.

The Plan expresses an ambition for the management of the property, which is to:

Manage it in a sustainable manner, to conserve, enhance and present its Outstanding Universal Value locally, nationally and internationally, and to balance the needs of conservation, operation and access alongside the interests of the adjacent local communities, whilst also contributing more generally to sustainable economic growth.

Consequently, it aims to engage with and deliver benefits to the local communities around the property; to attract visitors to the area; to develop opportunities for education and learning and adds value to the local and national economy.

The Plan sets out a prioritised list of agreed actions for a six year period, with lead partners for each. This Action Plan is subject to measurement and monitoring as set out in Section 6 of the Nomination. It will be under regular review by the Forth Bridge World Heritage Nomination Steering Group. This will ensure co-ordination of effort and alteration of actions to reflect any changes in circumstances or needs of the property.

This Management Plan focuses on maintaining the conservation of the Forth Bridge, together with managing the potential impact of its inscription. In particular, it will focus on processes that contribute to protecting and enhancing its setting, and improve interpretation, access and facilities both for local communities and for visitors to the area. It will also attempt to accommodate the needs of people seeking virtual access to the bridge, whether for monitoring or in an educational context.

The associated Action Plan covers the period 2014–2019, during which the nomination will be submitted and considered for inscription. Actions in the first years are geared towards information-gathering and project development, as well as establishing the essential mechanisms for engagement by local communities. These will help to deliver improvements to local infrastructure and site interpretation.

The Management Plan also acts as the framework for the Forth Bridge World Heritage Nomination Steering Group to coordinate specific actions and make effective use of other plans, policies and programmes that may cover the area around the property. It has been produced in consultation with key stakeholders to ensure it can be effectively supported and implemented by the wide range of organisations and communities that have an interest in the property.

The Plan sets out a prioritised list of agreed actions for a six year period, with lead partners for each. This Action Plan is subject to measurement and monitoring as set out in Section 6 of the Nomination. It will be under regular review by the Forth Bridge World Heritage Nomination Steering Group. This will ensure co-ordination of effort and alteration of actions to reflect any changes in circumstances or needs of the property.

The associated Action Plan covers the period 2014–2019, during which the nomination will be submitted and considered for inscription. Actions in the first years are geared towards information-gathering and project development, as well as establishing the essential mechanisms for engagement by local communities. These will help to deliver improvements to local infrastructure and site interpretation.

The Management Plan also acts as the framework for the Forth Bridge World Heritage Nomination Steering Group to coordinate specific actions and make effective use of other plans, policies and programmes that may cover the area around the property. It has been produced in consultation with key stakeholders to ensure it can be effectively supported and implemented by the wide range of organisations and communities that have an interest in the property.

In 2012, the Forth Bridge World Heritage Nomination Steering Group invited James Rebanks to assess the potential economic benefits that might be realised, with work put in by the partners if the Forth Bridge were inscribed. In his subsequent report, he proposed the vision outlined below.

"The Forth Bridge will be a World Heritage site that changes people’s lives for the better. A World Heritage Site that brings stakeholders together to make new things possible, at a global, national, regional and local scale. A World Heritage Site that people from around the world can learn about, or visit and have a genuinely world class experience. A World Heritage Site that is an exemplar of best practice: stimulating progressive changes to the infrastructure of local communities to ensure tourism is effectively managed and sustainable. Also, crucially, World Heritage listing will benefit local communities by improving quality of life and by raising the profile of local communities as places to live, work and invest. This nomination aspires to make a Scottish icon into a global icon: a showcase of the best of Scottish endeavour, imagination, engineering and design.”

James Rebanks (2013), The Forth Bridge World Heritage Nomination: Realising the Potential Benefits

The Steering Group aspires towards the ambition articulated in these words, and this Management Plan attempts to outline ways in which it might be achieved.
The Forth Bridge represents the pinnacle of 19th-century bridge construction and is without doubt the world’s greatest trussed bridge. It is a keystone achievement in the world history of bridge-building and of steel construction, and it continues to act as a major artery connecting the north and south of the country by train.

The railway crosses the Firth of Forth in the east of Scotland, 14 kilometres (9 miles) west of central Edinburgh, leaving Lothian at Dalmeny and arriving in Fife at North Queensferry. The point chosen is where the Forth Estuary narrows, separating the inner from the outer Forth. Here volcanic sills of hard quartz dolerite outcrop through the sandstone at Hound Point, Inchgarvie, and have long been quarried at North Queensferry.

The Forth Bridge Company was formed in 1873 to carry into effect the design of Thomas Bouch for a twin suspension bridge hung from immensely tall towers. It would take the shortest crossing point via Inchgarvie Island, separated by two equally deep and wide channels. This meant that each of the main spans would be the biggest the world had yet seen. Bouch’s Tay Rail Bridge was already the longest viaduct in the world. Its 3.26 km route from Fife to Dundee covered a broad but relatively shallow expanse of water, and so could be made of multiple girder spans. The disastrous collapse of that bridge in 1879 had a seminal impact on bridge design and construction worldwide, and it brought work on the Forth Bridge to an immediate halt. Yet the North British Railway had confidence that the Tay Bridge would be rebuilt and also that the Forth could safely be crossed.

In 1880 John Fowler and Benjamin Baker started design on the present bridge and in 1882 tenders were issued. Their cantilever viaduct was begun in 1883 by Tancred, Arrol and Co, lead contractor, devising in the
Once they met each other, the main span comprised two 207 metre (680 feet) cantilevers and a 107 metre (350 feet) suspended span hung between them. It was a world wonder of its age, this Victorian engineering marvel was made possible by new technologies.

Steel was used here for the first time on a large-scale European construction project, thanks to the Anglo-French Siemens-Martin process that made economically possible the delivery of great quantities of steel, mostly made in Scotland and Wales.

53,000 tonnes of mild steel is used in two ways, as main compression struts of rolled steel plate riveted into 4m diameter tubes, and lighter spars that are used in tension. The overall length is 2,529 metres (8,297 feet). Each of the two largest spans of the bridge reach across 521 metres (1,710 feet). Of balanced cantilever design built so as to balance each other during construction—once they met each main span comprised two 207 metre (680 feet) cantilevers and a 107 metre (350 feet) suspended span hung between them. When completed they were equally the greatest spans in the world, and stayed so until 1917, when 549 metres (1,801 feet) was achieved in just one span at Quebec, at the third attempt, the first two having failed with much loss of life. No other attempt has been made to build such a large steel trussed bridge, and none has ever matched the perfect balance of structural elegance and strength represented by the Forth Bridge.

When completed as a bridge in 1889, and opened to rail traffic in March 1890, the bridge was the greatest example of its type. It holds the record for the world's longest multi-span cantilever bridge. Its distinctive profile is recognised world-over and the bridge is internationally regarded as an icon of Scotland and as a symbol of engineering prowess.
1.b Extent of the Property

The property contains all the attributes needed to sustain the property’s Outstanding Universal Value. It comprises the entire bridge, and nothing more than the bridge. Its arches spring from natural ground, partly buried in embankment, and its approach spans rise from the midst of North Queensferry, and from the eastern edge of Queensferry. The three towers from which the cantilevers balance are founded on caissons sunk into rock in the sea, on the sea-covered part of Inchgarvie Island, and either side of Battery Pier on the North Queensferry headland. It is accessed from either end at track level from Dalmeny and North Queensferry stations respectively.

Construction of the bridge was awarded as a distinct contract and this is demarcated from the contracts for building the connecting lines north and south. Contract drawings show: “Point Marked A (and B) on Contract Plan No. 1 Termination of Contract Works”. The bridge construction contract physically ends where the stone parapet ends, and where the embankments start. This defines the full extent of the property.

The South (or Queensferry) cantilever pier stands on and includes the caissons set into the water. The central pier stands on the submerged rock of Inchgarvie Island. The Fife pier stands on rock in North Queensferry and allows close access to appreciate the colossal scale of the skewbacks from which the riveted steel tubes forming the main frame of the structure spring. All parts of the bridge form the property, whether lying in conservation areas or stretching across water between the two conservation areas.

Beyond the property, elements associated with earlier ferry piers, and the later Road Bridge, inform the understanding of the crossing point but are not essential to the Outstanding Universal Value of the bridge. These are already adequately protected through presence in Conservation Areas and Inventory Designed Landscapes, and form part of the immediate setting of, and location of viewpoints for, the bridge.

The railway runs northward through cuttings, and quarries (formed as building materials for the bridge were extracted) to an approach viaduct at Inverkeithing (an under-deck steel girder, also listed and recently painted Forth Bridge red), and it runs southward on an embankment above Dalmeny. But beyond North Queensferry and Dalmeny stations, it ceases to have the character of one viaduct, so those stretches of track need not be considered part of the property.

One of the islands in the Firth of Forth is very close to the bridge. Inchgarvie Island is a scheduled monument containing fortifications from medieval times to the First and Second World Wars. Some use was made of the island, like other land in the vicinity, during construction of the bridge, and again by Network Rail in its recent work to the bridge. It is in private ownership and is uninhabited. It is not proposed to include this within the property, just as the scheduling of the island excludes the active Forth Bridge. The bridge does not connect to the island, but to the underlying rock below lowest sea level.

Consideration has been given to the inclusion within the nomination of the embankments beyond the north and south ends of the bridge. These are man-made, and in Fife soon give way to a tunnel and cutting. They were essential to give level access to trains crossing the bridge, and were completed early in the construction works, but they are clearly not physically part of the bridge. Equally, although also maintained by Network Rail, they are not included within the same management regime, and have therefore been excluded from the property as defined in the nomination.

In conclusion, the property is considered to be complete as a single railway viaduct stretching across the estuary from escarpment to escarpment.

The drawing is numbered to show the component parts of the bridge. The colour red marks progress achieved by March 1 1888 and in blue, progress by September 1 1888 (source Network Rail Archives: www.networkrail.co.uk/ VirtualArchive/forth-bridge/ Forth Bridge Elevation and Section (coloured), 1 January 1888. © Network Rail, Sir John Fowler and B. Baker, NRCA11004056)

<table>
<thead>
<tr>
<th>Bridge Component</th>
<th>Main Construction Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. North Approach Arches</td>
<td>Three granite arches and parapet (not shown)</td>
</tr>
<tr>
<td>2. North Approach Viaduct</td>
<td>Five-span steel viaduct set on stone piers</td>
</tr>
<tr>
<td>3. North Tower</td>
<td>Stone tower containing north portal and counterweight</td>
</tr>
<tr>
<td>4. Fife Pier and Cantilevers</td>
<td>North steel double-cantilever tower on stone piers, with steel internal viaduct</td>
</tr>
<tr>
<td>5. North Suspended Span</td>
<td>Steel bow-truss span linking cantilevers</td>
</tr>
<tr>
<td>6. Inchgarvie Pier and Cantilevers</td>
<td>Central steel double-cantilever tower on steel caissons, with steel internal viaduct</td>
</tr>
<tr>
<td>7. South Suspended Span</td>
<td>Steel bow-truss span linking cantilevers</td>
</tr>
<tr>
<td>8. Queensferry Pier and Cantilevers</td>
<td>South steel double-cantilever tower on steel caissons, with steel internal viaduct</td>
</tr>
<tr>
<td>9. Jubilee Tower</td>
<td>Stone tower containing north portal and counterweight</td>
</tr>
<tr>
<td>10. South Approach Viaduct</td>
<td>Ten-span steel viaduct set on stone piers</td>
</tr>
<tr>
<td>11. South Approach Arches</td>
<td>Four granite arches and stone parapet (not shown)</td>
</tr>
<tr>
<td>12. Lighthouse on pier for Bouch’s Forth Suspension Bridge</td>
<td>Iron, glass, brick and sandstone</td>
</tr>
</tbody>
</table>
1.c Ownership

1.d Baseline Studies of Current Condition of the Property

1.d.1 Condition Assessments

Network Rail is the owner of the bridge and responsible for its ongoing day-to-day maintenance and management. It is a non-profit making virtual public limited company funded by railway users and Government support.

A baseline resource from which to monitor change is given by the photographic surveys routinely carried out by Network Rail and its contractors (currently Balfour Beatty), and historically through the collections in the National Records of Scotland, Historic Scotland, the Royal Commission on the Ancient and Historical Monuments of Scotland (RCAHMS), Imperial College London, and the Institution of Civil Engineers.

In partnership with the Glasgow School of Art, the creation of a 3D digital model through detailed and extremely accurate laser scanning technology is also being investigated, with the aim of providing a baseline survey and data set. A pilot survey was completed with excellent results in August 2013, and a complete survey of the bridge is being considered as an action of this Management Plan.

More generally, Network Rail routinely reports to the Office of Rail Regulation, and the Partnership Management Agreement provides a means by which local authorities, in certain cases consulting Scottish Ministers, will be able to monitor the condition of the bridge.

Considering its age, the Forth Bridge is in an excellent state of conservation. The recently completed refurbishment of the bridge was very thorough and assures the site against risk from neglect or decay to its Outstanding Universal Value for the foreseeable future. There is no discernible threat to its continued use as an essential part of the national rail network, which is the best means to ensure its continued maintenance and high state of conservation.

Network Rail performs Mandatory Visual Inspections of the Structure. These are documented as written reports with a view to highlighting urgent issues. These are carried out from existing walkways adjacent to the track and the walkways immediately below track level in the Internal and Approach viaducts. These inspections (by eye and binoculars) are to some degree limited to everything that can be seen from these walkways but serve as a very good general health check. Effectively one sixth of the bridge is inspected each year.

The Condition of the Bridge in 1995: the UK Health and Safety Executive (HSE) then commissioned an independent assessment of the bridge using consultants Pell Frischmann. It determined the strength of the various members of the bridge by means of condition survey, hazard assessment and structural analysis, and found:

- The bridge was safe, in its current condition, to carry Railtrack’s (the custodian of the bridge from 1994 to 2002) present loading requirement
- Although the bridge had been allowed to deteriorate, at that time the structural integrity of the bridge was not compromised
- The assessed capacity of the bridge in its then current condition complied with modern standards of safe design of bridge structures
- The existing maintenance regime required improvement if the deterioration of the bridge was to be arrested and potential structural problems in the future were to be avoided.

This gave the impetus for the comprehensive programme of refurbishment that followed and was completed by Network Rail in 2011. It shows how far the bridge has come thanks to that investment. To take as an example:

The bridge’s bearings are original, have never been replaced and were deemed fit for purpose as part of the structural integrity calculations carried out in 1995. One of these had had a crack patch-repaired in 1934.

On-going maintenance of the bridge includes periodic checking of the bearings and in the event that serious problems develop, Network Rail would consider replacement as a solution. A “modern” greasing system has been introduced into the secondary bearings in the approach viaducts and suspended spans. The lubrication arrangement is made up of a series of “grease-o-matic” canisters that effectively feed the bearings with a low viscosity grease. These followed recommendations made in the HSE report in 1996, and was not deemed necessary in the principal bearings at the North and South Jubilee Towers.

Past Repairs: Other repairs are known to have taken place in the past, such as the strengthening of the deck trough that carries trains in 1919-24 and in 1934 a patched repair using a section of rail in an abutment. These enabled full and non-stop operation of the bridge.

In the recent past all repairs have been carried out sympathetically in keeping with the bridge structures, using, for example, “modern rivets” or cup-head bolts incorporating a round head on the most visible of surfaces to mimic the original rivets used in the construction of the bridge. This technique is more often used in the repair of riveted structures than the reintroduction of hot riveting. That process died out in World War Two.

Fatigue: Wear and tear: The bridge is not now stretched to its limits. Fatigue was considered in the HSE report in 1995: “…the results…had been used up. Fatigue effects from temperature and wind loading were also considered but were not significant.”

The Forth Bridge and the rail network associated with it can still significantly increase capacity and services. Therefore there was no case for including heavy rail as a precaution in the new Forth Replacement Crossing. This is built only for road transport because the Forth Bridge can continue to be relied on for rail.
Section 1

17

Table collated from information in the Network Rail CARRS report (and see 6.4 Monitoring)

South Arches 3 Span Masonry Arch Viaduct

Conserved in granite, Arches noted to be in good overall condition with no notable defects reported for many years. Widespread leaning and efflorescence reported in addition to vegetation ingress issues.

North Approach Viaduct

Constructed in early steel, metallic 5-spans viaduct, coated in old 5-coat Alkyd system throughout between 1993 and 1997. Oldest and therefore poorest paint on the bridge but still serviceable. Envisage need to commence repaint in approximately 5 year time. Systematic attention required regarding contact points during annual maintenance contract. Minor non-urgent steelwork repairs envisaged to be carried out along with contract points. As this travels over dry land in Fife, and is relatively easily accessed, this part has what is now the oldest paint. So it is early in the programme for attention.

North Tower, Constructed of Granite

Torn barmi arch over the running line, internal spiral staircase in relatively poor condition, though non-essential. Maintenance of stairs to be programmed in within the next 5 years. No repainting envisaged within next 15 years. Systematic attention to contact points.

North Queensferry, Internal Viaduct

All elements coated in glass-flake epoxy system with exception of bays 5 and 6, North. North Queensferry internal viaduct. Glass-flake systems applied during 1997 to 2011. Alkyd System applied 1996/1997. Repainting may be expected to Alkyd system areas within 5 to 10 years. No repainting of glass-flake system envisaged within 10 years. Systematic attention required to contact points during annual maintenance contract. Minor non-urgent steelwork repairs envisaged to be carried out along with contract points.

North Queensferry Pier and Cantilever

All elements coated in glass-flake epoxy system except Fife North “C” Bracings, glass-flake systems applied during 1997 to 2011. Alkyd system applied 1996/1997. No repainting envisaged to glass-flake areas for 10 to 15 years. Possible need to repaint areas of Alkyd coatings areas within 5 to 10 years. Systematic attention required to contact points during annual maintenance contract. No repainting of glass-flake system envisaged within 10 years. Some attention may be required to the old gantry system - now locked off at end of span.

Steelwork (Surface prepared To Swedish Standard Sa 2½)

Inchgarvie Tower and Cantilevers

Structure above base of wind fence coated in epoxy glass-flake system 2003 to 2008. Soffit coated in 1996 with “old” 5 coat Alkyd system and we could expect to have to repaint within 5 to 10 years. Some attention also may be required to the old gantry system - now locked off at end of span. Systematic attention required to contact points during annual maintenance contract. Minor non-urgent steelwork repairs envisaged to be carried out along with contract points.

Inchgarvie Tower and Cantilevers

No expectation to repaint within 15 years. Systematic attention required to contact points during annual maintenance contract.

South Suspended Span

Structure above base of wind fence coated in epoxy glass-flake system 2003 to 2008. Soffit coated in 1996 with “old” 5 coat Alkyd system and we could expect to have to repaint within 5 to 10 years. Attention also may be required to the old gantry system - now locked off at end of span. Systematic attention required to contact points during annual maintenance contract. Minor non-urgent steelwork repairs envisaged to be carried out along with contract points.

Historically the Forth Bridge had been the principal path for coal trains serving the large thermal power station at Longannet, but the re-opening of the Stirling- Alloa-Kincardine railway line has greatly reduced this load. At its height, the overall freight traffic amounted to some 6,000 freight train journeys per annum, each outward train being up to 1,400 tonnes in weight – but very much less coming back because they usually returned empty. However, the bridge remains an important freight route (e.g. for pipes and cement) and can be called on at any time as the only diversionary route to again service Longannet. Meanwhile, the reduction in freight train numbers has freed capacity to permit an increase in the numbers of passenger train paths across the bridge.

In summary, general wear and tear has little significant impact on the bridge. Regular maintenance of the railway itself, along with a routine care and maintenance regime for the structure addresses any items of general wear and tear. Replacement of worn components is generally limited to the rails themselves and to the embedded timber baulks on which they sit. The timbers in the troughs absorb some of the impact energy of the trains and spread the load.

Conservation Measures

The property is protected through the planning system by its designation as a Category ‘A’ Listed building. The draft Management Plan identifies actions to further protect and enhance the condition of the historic fabric, many of which will be achieved through the Partnership Management Agreement.

One such measure is for example, the recent removal by Network Rail of some unsightly cable troughs from the south face of the South Jubilee Tower, which has returned this granite elevation to its original clear view. A Conservation Management Plan (CMP), will help to build on the achievements of the recent restoration works.

Top: While it was possible to spray paint many of the surfaces, many parts of the Forth Bridge required final hand painting, July 2008. (© Courtesy of Balfour Beatty)

Below: The new Epoxy glass-flake coating system that has been applied to the bridge, replacing the original paint, which contained lead. (© Courtesy of Duncan Soeman, ScotRail)
Landscape Assessment and Visual Appraisal

The property is a landmark from a distance of up to 20km, and contributes in various ways to the setting of so many places that it would be misleading to define a limited area as the only one in which the setting of the bridge must be safeguarded. In light of the UNESCO publication 25, World Heritage Buffer Zones (2009), the Steering Group has concluded that many of the desirable aspirations that could be addressed in the vicinity of the Forth Bridge are sufficiently far apart in north-south axes that in most cases one or the other bridge will be captured in a photograph, but not usually both together.

The tallest modern building in the vicinity is the control tower of Edinburgh Airport, 57m high, built in 2005. It can be seen from the top of the Forth Bridge, and vice versa. They are, however, hardly in competition at a distance of around 5-6 Km. When viewed in line from hills 16-20 km away to the south, the control tower would need to have been twice as high again to intrude into the sight line of the Forth Bridge. From higher points in these hills, the bridge is a distant element, unobstructed by man-made competition. This suggests that development does not need to be controlled to protect such long views.

City of Edinburgh Council adopted key view assessment to help assess the impact of proposed high-rise development within the city. This has proved to be useful in determining the potential impact of proposed development on the Old and New Towns of Edinburgh existing World Heritage Site, even well beyond the property itself (there is no Buffer Zone). What may be built in low-lying folds of hills may have less impact than would a new building of the same height on the crest of a hill. It may then be possible to adjust the massing of that development so as to minimise harm to the setting of specific landmarks. The system worked well, and Planning Authorities considering setting as a factor in determining planning applications may also take guidance from http://www.historicscotland.gov.uk/setting-2.pdf.

In the case of the Forth Bridge, the scale and setting of the structure is such that monitoring proposed developments using Viewshed analysis and controlling development through the existing system of Planning and designations will be at least as effective as has proved to be the case in the City of Edinburgh. It is therefore our view that a strictly-defined Buffer Zone would not be helpful in the context of the Forth Bridge.
The Nomination and Management Plan have been developed by the Forth Bridge World Heritage Nomination Steering Group, a sub-group of the Forth Bridges Forum. The Steering Group comprises representatives of the following organisations:

- **Network Rail**: the owner and operator of the Forth Bridge. It is a ‘not for shareholder dividend’ company, all its profits being reinvested in improving the UK railway network.
- **Transport Scotland**: the Scottish Government agency responsible for transport, whose responsibilities include railway infrastructure in Scotland. Transport Scotland also manages and funds the Forth Bridges Forum.
- **Historic Scotland**: the Scottish Government agency responsible for protecting and promoting Scotland’s historic environment.
- **Fife Council**: the local authority covering the area around North end of the bridge, including North Queensferry.
- **City of Edinburgh Council**: the local authority covering the south end of the bridge, including Queensferry.
- **Forth Estuary Transport Authority (FETA)**: the public body responsible for maintaining the existing Forth Road Bridge.
- **Visit Scotland**: the national organisation responsible for promoting tourism in collaboration with private businesses, public agencies and local authorities both in Scotland itself, the UK and overseas.
- **Queensferry Ambition**: Business Improvement District (BID) established in 2012 to promote Queensferry as a quality destination for businesses, residents and visitors, through strengthening local involvement and partnership.
- **Queensferry & District Community Council**: a voluntary but statutory body representing the people of Queensferry and Dalmeny.
- **North Queensferry Community Council**: a voluntary but statutory body representing the people of North Queensferry.
- **North Queensferry Heritage Trust**: a voluntary organisation dedicated to preserving and promoting the history and beauty of North Queensferry and its immediate surroundings.

The Steering Group has overseen the production of the Nomination Document and Management Plan, supported by a secretariat in Transport Scotland, and will continue to co-ordinate actions for the implementation of the Management Plan and its vision. A concordat to this effect has been agreed by the group:

We, the representatives of the Scottish Ministers (Transport Scotland and Historic Scotland), Network Rail, Visit Scotland, Fife Council, City of Edinburgh Council, the Forth Estuary Transport Authority, Queensferry Ambition, Queensferry & District Community Council, North Queensferry Community Council and North Queensferry Heritage Trust declare our support for the nomination of the Forth Bridge as a World Heritage Site.

We confirm that all parties are committed to working together to achieve appropriate recognition for the Forth Bridge in the cultural heritage of Scotland, the UK and its wider international context. Moreover, all parties confirm that they will work together to improve the protection, management, presentation and interpretation of the Forth Bridge and so deliver sustainable development for the economic and social benefit of the communities that live alongside it.

Membership of the Steering Group remains open and others with active interests around the property will be encouraged to join as appropriate. In the event of inscription being achieved in 2015, the word ‘Nomination’ will be removed from the full title of the Steering Group, and in the longer term it will review and revise the Management Plan.

The process of engaging local communities and businesses in the development of the World Heritage Site nomination commenced with the commissioning in December 2012 of Rebanks Consulting Ltd to examine the potential economic benefits of nomination to the local communities around the bridge. There followed a formal twelve-week public consultation exercise to provide an opportunity for local residents, businesses, organisations, visitors and others to comment on the nomination and management proposals for the Forth Bridge.

A public consultation document was produced which contained a summary of the proposals for nomination and management of the Site, highlighting the key issues, including potential benefits, threats, opportunities and restrictions. A consultation questionnaire accompanied the document, and both were made available throughout a twelve-week period and at public venues across the area. The consultation commenced on Monday 20th May and ended on Sunday 11th August 2013, and was available online through a dedicated website at www.forthbridgeworldheritage.com. In addition, four drop-in workshop sessions were arranged from May to August 2013 to enable the public to speak to members of the Steering Group about the proposals, and a promotion day was held at Edinburgh Waverley Station on 30th July.

The consultation focused on management issues relating to the local communities situated around the Forth Bridge, for whom the impact of World Heritage is likely to be most intense. Fifty-eight valid responses were received via the online questionnaire. Of the four public events that were held, two were hosted in Queensferry (south of the river), and two in North Queensferry, together attracting 93 people. The meetings took the form of facilitated workshops and proved to be lively and constructive events.
The response to the consultation was broadly very positive, with the overwhelming majority of online respondents welcoming the nomination of the bridge. Of those who were less confident about the perceived benefits of World Heritage inscription, most were also in favour, but were concerned about potentially negative impacts upon the quality of life in the two communities.

Much of the concern in the online questionnaire focused on road infrastructure, parking, potential congestion and worsening traffic hazards caused by a predicted increase in visitor numbers. These were perceived by many to be problems that already exist, and so the World Heritage nomination was thought by some to be a good opportunity for the local authorities to take the initiative and propose solutions before the situation gets even worse. There was a consensus that action needs to be taken as soon as possible, rather than waiting until potential inscription in 2015.

These issues also emerged strongly in the workshops, where it was stressed that a co-ordinated, sustainable approach to transport and parking was needed. Suggested solutions included better use of both of train services and of boat transport, as well as an expansion of park & ride facilities.

A small number of people expressed concern at the possibility of a surge in the number of visitors, so harming the existing character of the communities on both banks of the Forth, and any potentially negative impact on the natural environment. However, overall, responses were both positive and helpful, and have been incorporated into this Management Plan.

Many believe that World Heritage will bring with it opportunities for business, including tourism, and has the potential to feed into many forms of education. Perceived benefits ranged in scale from those affecting local businesses to national and international developments. There was an almost universal sense of pride and cultural value associated with the bridge, even amongst those who were concerned about harmful impacts from World Heritage inscription.

All the workshops expressed the hope that World Heritage would result in the attraction of more investment into the communities, with better networking, improved and better co-ordinated public transport, and with this, the potential for ‘Green Tourism’. There was therefore a strong feeling that effective management will be needed to ensure adequate systems and enhanced infrastructure to minimise the potentially detrimental effects of more traffic and people, if World Heritage inscription is achieved.

Meanwhile, the widespread support for the nomination was further demonstrated during the day of promotion at Waverley Station.

No negative reactions to the nomination were detected amongst a wide range of passing passengers and other pedestrians throughout the day. Some even expressed surprise that the Forth Bridge is not already a World Heritage Site.
The Forth Bridge is a globally-important triumph of engineering, at once structural and aesthetic. It represents the pinnacle of 19th century bridge construction and is without doubt the world’s greatest cantilever trussed bridge. When opened in 1890 it had the longest bridge spans in the world, a record held for 27 years. No other trussed bridge approaches its perfect balance of structural elegance and strength, nor its overall scale, and no bridge is so distinctive from others as is the Forth Bridge from its peers.

Superlative in its application of novel technologies, the Forth Bridge used and influenced engineering know-how that had become international in scope. The bridge continues to act as a vital transport artery and shows in an exemplary way how an historic bridge can be sensitively managed to meet modern needs. Painted Forth Bridge red, a task famously set into folklore as endless, this icon of Scotland perfectly encapsulates 19th century belief in mankind’s ultimate ability to overcome any obstacle: the impossible could indeed be made possible.

The Forth Bridge is the world’s first monumental-scale steel bridge. When it was built it had the longest spans in the world, was unique in its scale and superlative in its application of novel technologies. It is a keystone achievement in the world history of bridge-building and of steel construction. It has worldwide iconic status as a globally-important triumph of historic engineering. The genius of its design is at once structural and aesthetic. The ideas enshrined in this iconic industrial monument had worldwide scientific and architectural application that...
The Forth Bridge itself is listed at Category 'A' for its international and national importance. This gives it statutory protection and any change to the character of the bridge requires Listed Building Consent, which has to be obtained from City of Edinburgh and Fife Councils, with advice from Historic Scotland on behalf of Scottish Ministers. The date of statutory listing was 18th June 1973.

In addition to the Forth Bridge itself, in the adjacent bridgehead zone (at its north and south ends), there are a number of other listed buildings. Those relating to crossing the Forth are included in the table on page 28.

Significantly advanced the condition of mankind and society across the world.

The overall span of 2,529 metres links Fife to Edinburgh and beyond. Of counterbalanced cantilever design, each of the 521 m (1710 feet) spans of the bridge consists of two 207m (680 feet) cantilevers and a 107m (350 feet) suspended span. When opened in 1890, they were equally the greatest spans in the world, and stayed so until 1917. The overall size of the Forth Bridge remains unsurpassed by any other steel trussed bridge, and none of these has matched the perfect balance of structural elegance and strength represented by the Forth Bridge.

On completion in 1889 the bridge was therefore the greatest example of its type. It simultaneously achieved the longest and second longest spans in the world and held that record for an unprecedented length of time. It still holds the record for the world’s longest multi-span cantilever bridge, whilst its distinctive profile is recognised world-over and internationally regarded both as an icon of Scotland and a symbol of engineering prowess.

The criteria on which this nomination is based are therefore that the Forth Bridge:

Criterion i): Represents a Masterpiece of Human Creative Genius

The Forth Bridge is an aesthetic triumph in its avoidance of decoration and yet an achievement of tremendous grace for something so solid. Its steel-built cantilever design represents a unique level of new human creative genius in conquering a scale and depth of natural barrier that had never before been overcome by man.

Criterion ii): Exhibits an Important Interchange of Human Values on Developments in Architecture and Technology

The Forth Bridge was a crucible for the application to civil engineering of new design principles and new construction methods. It was at that time the most-visited and best-documented construction project in the world. It therefore exerted great influence on civil engineering practice world-over and is an icon to engineers world-wide.

Criterion iv): An Outstanding Example of a Type of Building, Architectural or Technological Ensemble or Landscape Which Illustrates (a) Significant Stage(s) in Human History

The Forth Bridge represents a significant stage in human history, namely the revolution in transport and communications. The railway age, of which it is a potent symbol, was made possible by, and influenced the speed and connectivity of, the industrial revolution. The bridge forms a unique milestone in the evolution of bridge and other steel construction, is innovative in its design, its concept, its materials and in its enormous scale. It marks a landmark event in science and architecture that went on to profoundly influence mankind in ways not limited to bridge-building.

The Forth Bridge itself is listed at Category 'A' for its international and national importance. This gives it statutory protection and any change to the character of the bridge requires Listed Building Consent, which has to be obtained from City of Edinburgh and Fife Councils, with advice from Historic Scotland on behalf of Scottish Ministers. The date of statutory listing was 18th June 1973.

In addition to the Forth Bridge itself, in the adjacent bridgehead zone (at its north and south ends), there are a number of other listed buildings. Those relating to crossing the Forth are included in the table on page 28.

2.b Heritage Protection

2.b.1 Listed Buildings
There is no scheduled monument as part of the property. This designation applies to assets of national importance that are not expected to be put into use. So the nearby island of Inchgarvie is scheduled, and specifically excludes the Forth Bridge. The central cantilever tower of the bridge stands on rock that is near the island. The Chapel to St James in North Queensferry is a scheduled monument, St James is the patron saint of travelers.

2.b.2 Scheduled Monuments

<table>
<thead>
<tr>
<th>Name of Building</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light House and pier of the first bridge by Thomas Bouch, 1878, included within the listing of the Forth Bridge itself</td>
<td>Category A</td>
</tr>
<tr>
<td>Forth Road Bridge, 1964</td>
<td>Category A</td>
</tr>
</tbody>
</table>

2.b.3 Conservation Areas

<table>
<thead>
<tr>
<th>Name of Building</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Queensferry Station, 1890</td>
<td>Category B</td>
</tr>
<tr>
<td>Town Pier, 1810-18</td>
<td>Category A</td>
</tr>
<tr>
<td>East and West Battery Piers, 1810-13, altered 1883-90</td>
<td>Category A</td>
</tr>
<tr>
<td>Railway Pier, 1872-7</td>
<td>Category B</td>
</tr>
<tr>
<td>Pilot Boat Slipway circa 1883</td>
<td>Category C</td>
</tr>
<tr>
<td>Pierhead Tower House, 1810</td>
<td>Category C</td>
</tr>
<tr>
<td>Pierhead Signal House, 1810</td>
<td>Category B</td>
</tr>
<tr>
<td>Royal Naval Signal Station Cottages</td>
<td>Category B</td>
</tr>
<tr>
<td>Carringnose Battery, 1911-2</td>
<td>Category A</td>
</tr>
</tbody>
</table>

2.b.4 World Heritage Sites

<table>
<thead>
<tr>
<th>Name of Building, City of Edinburgh</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalmeny Station, 1890</td>
<td>Category B</td>
</tr>
<tr>
<td>Hawes (New Hall) Pier and Leading Light, 1810</td>
<td>Category B</td>
</tr>
<tr>
<td>Queensferry Harbour 16th century/1809-18</td>
<td>Category B</td>
</tr>
<tr>
<td>Bridge House, 22-23 Newhalls Rd, 1882</td>
<td>Category C</td>
</tr>
<tr>
<td>Hawes Garage, 18th century</td>
<td>Category C</td>
</tr>
<tr>
<td>Hawes Inn, 1838/1897</td>
<td>Category B</td>
</tr>
</tbody>
</table>

Queensferry Conservation Area

The Conservation Area includes the masonry arches and the first seven spans of the Queensferry viaduct of the property, as far as the tidal Low Water Mark. The Conservation Area is enclosed at the west end by the Forth Road Bridge. The Conservation Area Character Appraisal was published by City of Edinburgh Council in 2001, so the council proposes to prepare a review of this appraisal in the short to medium term.

For more information, visit: http://www.edinburgh.gov.uk/downloads/file/1507/queensferry_conservation_area_character_appraisal

Dalmeny Conservation Area

Appraisal emphasises the rural character of this village conservation area, the landmark buildings, predominant vernacular building forms and materials, and the mainly residential character. The Forth Bridge is visible in gaps between houses from the green and from the road running northwards. The Conservation Area Character Appraisal was approved by City of Edinburgh Council in 2000.

For more information, visit: http://www.edinburgh.gov.uk/directory_record/10196/dalmeny_conservation_area

A tree preservation order (TPO) has an equal effect on felling and topping of trees, even where not actually a conservation area. This applies in respect of tree cover at the escarpment that is at track level between the road and rail bridges at Northcliff, North Queensferry.

Section 228 Section 2 29
2. Land-Use Planning

2.c. World Heritage Sites and Planning

World Heritage Sites in Scotland are protected by the following legislation.
- The World Heritage Sites Act 1990
- World Heritage (Scotland) Act 1994

2.c.2 Relevant Local Plans

There are four levels of planning in Scotland:
- The National Planning Framework
- Strategic Development Plans
- Local Development Plans
- Supplementary Guidance

Local Development Plans (LDP) set out policies and proposals for the development and use of land in their area. They are the local interpretation of regional and national planning policy, and must conform to the relevant Strategic Development Plan (SDP) for their region and the National Planning Framework (NPF).

City of Edinburgh Council encourages innovation and well designed developments that relate sensitively to the existing quality and character of Edinburgh and Fife. New developments must be designed to complement the special character or appearance of the area.

LDP policies therefore provide the means by which development affecting the designated sites is managed, and by which they are protected from inappropriate development. All development is approved, or not, under the terms of the relevant LDP, which set out a vision as to how areas will change. They also describe where development will take place and where it will not. These are updated in a regular cycle of consultation.

The planning authorities surrounding the bridge are currently in a state of transition in Edinburgh, and the Town and Country Planning (Scotland) Act 1997 and the 1987 Ancient Monuments and Archaeological Areas Act. In this case, the property is a category A listed building, with the Queensferry and North Queensferry Conservation Areas, themselves containing listed buildings, provide adequate protection to the immediate bridgehead zones.

The Scottish Historic Environment Policy (SHEP) is the primary policy guidance on the protection and management of the historic environment in Scotland. Scottish Planning Policy (SPP) sits alongside the SHEP and includes the Government’s national planning policy on the historic environment. It provides for the protection of World Heritage Sites by considering the impact of development on their Outstanding Universal Value, authenticity and integrity.

Local policies specifically protecting the property are contained within City of Edinburgh and Fife Local Development Plans.

LDP policies therefore provide the means by which development affecting the designated sites is managed, and by which they are protected from inappropriate development. All development is approved, or not, under the terms of the relevant LDP, which set out a vision as to how areas will change. They also describe where development will take place and where it will not. These are updated in a regular cycle of consultation.

The planning authorities surrounding the bridge are currently in a state of transition between the old Local Plans system and the new LDP/SDP system. However, the principles behind, and the strength of the policies affecting the bridge and its setting remain the same through this period of change. The local authorities are both represented on the Steering Group, which will play a part in ensuring that the conservation of the property is adequately promoted in any new and revised Plans and guidance.

City of Edinburgh Policy Summary

The Dunfermline and West Fife Local Plan (DWFLP), adopted 2012, is to be replaced by the Fife Local Development Plan in 2015. The DWFLP remains the current, adopted statement of Council policy until the LDP is formally adopted, anticipated to be by late 2015. The proposed LDP is, however, a material consideration in the determination of current planning applications.

Policies and proposals for the development and use of land in their area. They are the local interpretation of regional and national planning policy, and must conform to the relevant Strategic Development Plan (SDP) for their region and the National Planning Framework (NPF). The Scottish Historic Environment Policy (SHEP) is the strategic statement of national policy relating specifically to the historic environment. Below the LDP, more detailed local guidance is set out in Supplementary Guidance documents.

The policies in each LDP are used to determine applications for development. The LDP also informs decisions on investment opportunities, the provision of infrastructure and community facilities. Local residents and community groups are encouraged to work with the LDP to understand and engage with the planning issues affecting their area.
2.c.3 Local Landscape Areas and the Capacity for Wind Farms

In place of the former designation "Area of Great Landscape Value" and "Areas of Outstanding Landscape Quality" (AGLV/AOLQ), local authorities have developed proposals for what were called Candidate Special Landscape Areas (cSLA). The term ‘candidate’ will be dropped after consultation is complete and then the term will be Local Landscape Areas, as already adopted in Fife (see map). As the landscape areas are at different stages in the consultation process they carry different names in each local authority (see map). These tend to be areas that are rural in character, and so policies will aim to retain that character.

In West Lothian the Forth Shore AGLV will in due course become the Forth Coast Local Landscape Area.

City of Edinburgh has these:
- cSLA01: Southern Forth Coast
- cSLA04: Dundas Estate
- sSLA22: Craigie Hill (south of A90)

Fife has these:
- Ferry Hills
- Letham Hill
- South West Dunfermline
- Forth Islands

To inform the Local Development Plan, specific research has addressed, for example, the capacity for Wind Energy Development in West Lothian, in a consultation published in 2011. This found that only limited pockets around Livingston New Town, the M8 Motorway and around Black Law to the south west had that potential. The part nearest the Forth shore, Hopetoun Estate, was considered to be on the “highest scale of sensitivity” and therefore unsuited to use as a wind farm. Even if that were not the case we have argued that wind turbines would not threaten the Outstanding Universal Value of the bridge.

A similar capacity study into windfarms in Fife found that there are no landscape areas of Fife suitable for development of extensive windfarms with large scale turbines. In contrast with much of Scotland there is no or very limited capacity for wind turbines in the highest upland areas, due to the limited extent, high visual sensitivity and landscape value of these areas within Fife. Larger scale lowland farming areas have the greatest inherent capacity for wind turbine development. Some smaller scale lowland valley and basin areas have no or very limited capacity. Some coastal areas have limited capacity. Similar areas, whilst of a suitable scale and character for wind turbines, are visually sensitive and have a high landscape value and therefore have no capacity for development. (Onshore Wind Energy Strategy for Fife 2012)
The Forth Estuary Forum monitors and coordinates actions that enhance the environment of the Firth of Forth.

Gardens and Designed Landscapes

There is no designed Garden or Designed Landscape within the property, but there are some nearby, and they therefore play an important role in protecting the setting of the bridge. Those referred to here are all included in the Inventory of Gardens and Designed Landscapes compiled for Scottish Ministers by Historic Scotland. These are particularly evident in the more open landscape of the south side of the River Forth. That part of Dalmeny estate that stretches from the Forth Bridge to Mons Hill and Hound Point is so protective of the landscape setting as to be considered part of the bridgehead zone to the Forth Bridge. To the other side of Queensferry, Hopetoun House has on its axis a direct view of the Forth Bridge, and also views of it in elevation through the Forth Road Bridge from the shore line of that estate, Society Point to Abercorn. The Monument at The Binns, a property of the National Trust for Scotland, achieves a similar but more elevated view across Hopetoun. Inland is Dundas Castle which mainly looks south and east but also from a low ridge to the north and both bridges. The route taken by the M90 towards the Forth Bridge and soon the Queensferry Crossing intervenes but the top towers of the Forth Bridge are still in view.

The wider landscape in Fife north and east of the bridge and beyond its bridgehead zone includes estates like Fordell Castle, Pittencrieff and Donibristle (a remaining part of which is the inventory entry St Colme) that look onto the Forth. The foregrounds of these Key Viewpoints benefit from Inventory designation. Implications: Under the Town and Country Planning (Development Management Procedure) (Scotland) Regulations 2008, planning authorities are required to consult Historic Scotland on development proposals considered to affect an Inventory Garden or Designed Landscape. This applies only to developments that require planning permission, and is a material consideration but not a prohibition on development. Developments within designated landscapes will be considered in terms of their impact on that designated landscape, and only rarely will impact on the Outstanding Universal Value of a World Heritage Site beyond those boundaries also be a consideration.

The gardens and designed landscapes listed and mapped here predate the construction of the Forth Bridge, excepting Pittencrieff Park (1903). The focus of the Inventory designation is the conservation of the landscape within the park, but views to and from that landscape will be a consideration, according to the weighting of the values in the Statement of Significance. Thus Dalmeny designed landscape provides the setting for category A listed buildings and so has outstanding architectural value, and is of outstanding “scenic significance as it can be viewed from the Firth of Forth, the Forth Bridges and the south coast of Fife.” Although not initially laid out with a view to protecting a bridge that had yet to be built, these landscapes are cultural and natural components in the safeguards in place for the setting of the Forth Bridge.

Reference is made in the table opposite to views towards and from the Forth Bridges and Firth of Forth extracted from the Inventory of Gardens and Designed Landscapes:

Dalmeny	The designed landscape itself is of high scenic significance as it can be viewed from the Firth of Forth, the Forth Bridges, and the south coast of Fife as well as being significant from the adjacent locality.
Dundas Castle	There are long-distance views over the parkland to the Firth of Forth and views northwards out to the Forth Bridges.
Hopetoun House	Hopetoun House was sited facing due east. An avenue extending east from the house was described on the layout plan by William Adam as “carrying your eye over two miles of the River Forth to the island and ruins of Inchgarvie and from thence forward along the River 22 miles or more to North Berwick Law, being a high Mount in form of a sugar loaf that terminates the Avenue. This designed view has been interrupted by the road and rail bridges across the Forth.
House of The Binns	Panoramic Views to the bridges of the Forth from Monument over Hopetoun to all of the bridges.
Pittencrieff Park	Views can be obtained southwards to the Forth Road Bridge and the Lothian Hills.
Fordell Castle	From the site of Fordell House (demolished 1962) there are expansive views south over open parkland towards Dalgety Bay and the Forth of Firth.
St Colme	St Colme is set on elevated ground overlooking Barnhill Bay, with extensive views over the Firth of Forth to Edinburgh and the Lothian coast. The eastern approach from Abercorn allows uninterrupted views over the Firth of Forth. Along the remainder of the old east drive to Donibristle House there are panoramic views over the Firth of Forth to the Lothians and towards Donibristle House. From the site of the old summerhouse in Temple Plantation there is a panoramic view over the Firth. Perimeter tree belts enclose the landscape to the north.

Reference: http://www.historic-scotland.gov.uk/index/heritage/gardens.htm

Those contiguous parts of the Inventory sites on the Lothian/south side of the River Forth and within the visual contour are within the bridgehead zone. They offer some protection from development within their boundaries to key views indicated in the map, as also do the Inventory Sites not in the bridgehead zone.

Battlefields

The property stands at its northern end within the designated Inverkeithing Battlefield, which is included in the Inventory of Historic Battlefields. North Queensferry was the landing point in 1651 of an invading English army. Since then, the battlefield has physically changed through land reclamation, the new Rosyth garden city, the growth of Inverkeithing and the concentration of transport infrastructure at this headland. Topography and contemporary accounts give clues to the location of initial stances of the English army at Ferryhills, cut through by the Forth Bridge tunnel, and of the Scots at Whinny and Castland Hills and their last stand at Pitreavie Castle.

The Inventory of Historic Battlefields is a non-statutory designation for Scotland’s nationally significant battlefields, which seeks to retain key landscape characteristics and important features for the future, protecting, managing, enhancing and promoting them as appropriate, while allowing the landscape to accommodate modern demands. There are no new legal restrictions on the area identified by the Inventory maps. Instead, the Inventory sites will be given particular consideration in the planning process and in the plans and policies of other relevant public bodies. Planning authorities and public bodies may consult Historic Scotland on development proposals considered to affect an Inventory battlefield and may give them consideration in the determination of a case.

A whinstone quarry is in occasional operation on the north side of the headland, evidence of the longstanding use of volcanic basalt from North Queensferry over many years, not least for use in construction of the Forth Bridge. Its expansion to the south is circumscribed by the position of a public road.

A recent archaeological investigation was organised by North Queensferry Heritage Trust.
and Fife Council into a possible English army breastwork on the Ferry Hills. It uncovered a bank composed of very large lumps of angular whinstone rock with mechanical quarry drilling holes, making this a feature most likely associated with the construction of the railway and the bridge. The bridge and its approaches simultaneously impact on the landscape of the battlefield and are reminders of the most direct route that an invading army could take. The possible landing point at Port Laing, and the initial defensive position of the English Army on the Ferry Hills nonetheless lie on the North Queensferry peninsula, and Castland Hill is one of its key viewpoints within the further setting of the bridge.

Natural Designations
The inter-tidal zone close to and below the bridge benefit from natural designations that are layered according to their value to different species. Of these, Ramsar sites give the strongest protection available to natural sites of European importance in the European Union. Ramsar sites are wetlands of international importance, designated under the Ramsar Convention of 1971 (ratified by the UK in 1976). This designation applies to the inter-tidal shoreline of North Queensferry round to and including Inverkeithing Bay, and all the ferry slipways in their immediate environs are protected from actions that might harm their value to migratory bird species, in particular. A side effect is protection of the foreground in views from the shore of the Forth Bridge.

Specific natural designated sites and areas include:

Firth of Forth Ramsar (Wetland) Natural Site:
http://gateway.snh.gov.uk/sitelink/siteninfo.jsp?pa_code=8424

Link to more about Ramsar Sites: www.snh.gov.uk/protection-scotlands-nature/protected-areas/international-designations/ramsar-sites/

Firth of Forth Sites of Special Scientific Interest (SSSI):
http://gateway.snh.gov.uk/sitelink/siteninfo.jsp?pa_code=8163

SSSI are areas of land and water (to the seaward limits of local authority areas) that Scottish Natural Heritage (SNH) considers to best represent natural heritage – its diversity of plants, animals and habitats, rocks and landforms, or a combinations of such natural features. They are the essential building blocks of Scotland's protected areas for nature conservation. Many are also designated as Natura sites (Special Protection Areas or Special Areas of Conservation). The national network of SSSI in Scotland forms part of the wider GB series. SNH designates SSSI under the Nature Conservation (Scotland) Act 2004. SSSI are protected by law. It is an offence for any person to intentionally or recklessly damage the protected natural features of an SSSI.

The Site Management Statement, site code 8163, sets out five broad objectives for management:

- maintaining bird populations,
- maintaining the area in a favourable condition for feeding, resting, roosting and breeding,
- maintaining habitat, botanical and invertebrate interest,
- maintaining the geological features of interest,
- encouraging recreational enjoyment while recognising the need to protect the nature conservation interest.

Carlingnose Quarry SSSI is managed by Scottish Wildlife Trust and includes a stage in the Fife Coastal Path that offers good views towards the bridge. It has a high degree of habitat and plant diversity. Management aims are to reduce invasive scrub. Quarrying will not resume. *Operations requiring consent* are set out here: http://gateway.snh.gov.uk/sitelink/documentview.jsp?p_pa_code=8163&p Doc_Type_ID=28

Firth of Forth Special Protection Area (SPA):
http://gateway.snh.gov.uk/sitelink/siteninfo.jsp?pa_code=8499

SPA are strictly protected sites classified in accordance with Article 4 of the EC Birds Directive, which came into force in April 1979. They are classified for rare and vulnerable birds (as listed on Annex I of the Directive), and for regularly occurring migratory species, at, for example, Port Edgar.
The members of the Steering Group and other bodies undertake many activities around The Forth Bridge, but Network Rail and its contractors are solely responsible for managing the property itself. A key purpose of the Management Plan is therefore to support Network Rail with this task, but also to co-ordinate wider efforts relating to the impact of potential inscription, and to focus on the priorities for the area around the property that is most likely to be affected if the nomination is successful.

The nominated property is owned, operated and maintained by Network Rail, the national railway company responsible for maintaining and operating the railway infrastructure in the UK. Network Rail routinely reports to the Office of Rail Regulation. Although at present there is no unified, published Heritage Policy for the railways in the UK, Network Rail, like its predecessor, Railtrack, has a proud track record in protecting, conserving and restoring railway heritage.

In Scotland, this is achieved by actively adhering to the policies laid down in the Scottish Historic Environment Policy (SHEP), working with Historic Scotland on upgrading and rationalising designations, the most recent example being thematic work on signal boxes. Network Rail has a central team, including planners, archivists and engineers, to provide a strategic view of building and architectural issues, like managed stations, many of which are listed buildings. Part of this work involves producing conservation and development management plans for managed, listed stations in association with local authorities and Historic Scotland. In the case of larger structures such as Glasgow Central Station and the Forth Bridge, this can involve a formal Partnership Management Agreement. In situations where historic railway infrastructure is no longer used, disposal is carefully managed through the Railway Heritage Committee, which was recently incorporated to come under the Trustees of the Science Museum Group, including the National Railway Museum.

In the case of the Forth Bridge, Network Rail uses its Civil Asset Register and electronic Reporting System (CARRS), to ensure that each part of the bridge is programmed to be inspected and works are prioritised according to their urgency. Each section of the bridge is colour coded, as illustrated below. It has a time-span appropriate to the cycle of attention needed at each part.

In addition, a Partnership Management Agreement for the Forth Bridge provides a means by which local authorities, in certain cases consulting Scottish Ministers, will be able to monitor works affecting the bridge.

Below: These sample pages (© Network Rail) refer to the work recently done to parts of the bridge, including the Fife cantilevers and piers. It shows that this area had some past work done by the old, but not original, five-coat Alkyd system. Those areas will therefore be the first to be recoated by the system applied elsewhere on the bridge in the last decade.
Fife and City of Edinburgh Councils are represented on the World Heritage Nomination Steering Group, and together own and maintain some of the infrastructure within and around the communities at each end of the bridge. The local authorities work in the public interest with other organisations, landowners, and service providers, as well as the Community Councils. The national authority is the Scottish Government, working through its agencies such as Transport Scotland and Historic Scotland. The United Kingdom as state party to the World Heritage Convention is represented by the Department for Culture Media and Sport (DCMS).

There is a variety of businesses within the communities at each end of the bridge, and in the case of Queensferry, since 2012, business interests have been co-ordinated through the Business Improvement District (BID) Queensferry Ambition. Another Business Improvement District is making progress in Dunfermline, Fife. Many of these businesses have an interest in possible enhancements to local infrastructure, as increases in visitors might follow inscription. The adjacent estates of Dalmeny and Hopetoun also promote tourism and provide leased business space in farmsteadings. Many business premises make reference in their signage and shopfronts to one or both bridges, showing a long-standing symbiotic relationship to the Forth bridges.

There is a wide variety of signage and displays indoors, in print and online provided through a range of local organisations, ranging from North Queensferry Heritage Trust, South Queensferry Museum (under City of Edinburgh council), to the ‘Brigers partnership’, together with the provision of bus, boat and walking tours organised by businesses and volunteers. For many years, information on the Forth Bridge was made available by the Forth Bridges Visitor Centre Trust, which operated a website and a small exhibition at the Queensferry Hotel. However, the hotel elected to reclaim the exhibition space for its own business use, and in 2012, the trustees chose to wind up the Trust. There is therefore currently no formal visitor centre dedicated only to presentation and interpretation of the Forth Bridge. There is, however, the Forth Bridges ‘Contact and Education Centre’, established by Transport Scotland in 2013 in Queensferry, at the south end of the Forth Road Bridge. This contains an exhibition space and viewing area serving all three bridges (the Forth Bridge, the Forth Road Bridge, and Queensferry Crossing). Meanwhile, the Forth Bridges Forum has established a website at www.forthbridgeworldheritage.com which provides online information and a means for consultation on the Forth Bridge and its World Heritage nomination.

Network Rail is consulting on a proposal to establish visitor centres with interpretation and education facilities at one end of the bridge, and is exploring the possibility of providing public access to both ends of the bridge superstructure. There have, meanwhile, been a number of schools-based education initiatives that have promoted the Forth Bridge to children. These have taken the form of art and writing initiatives, organised by City of Edinburgh and Fife Councils. Queensferry and Inverkeithing High Schools have invested time and resources in the 2013/2014 academic year. A competition was designed to engage young people in the nomination process, raising their awareness of the bridge, its history and significance, to actively engage with and feel a part of the World Heritage nomination. The premise for all entries is a piece of writing - fiction, non-fiction, historical or science fiction, using the bridge as centre piece. The Bridge by the late Iain Banks has been set by the schools to offer inspiration.

The Steering Group’s purpose and composition is outlined above, and plays a key role in ensuring community engagement. It has met on a monthly basis, with a secretariat provided by Transport Scotland, and has fulfilled a governance role, overseeing the production of the Nomination Document and Management Plan. Following the submission of the Nomination dossier, it will meet regularly. Once the decision of the World Heritage Committee is known, and if favourable, it will continue to function, but will lose the word ‘Nomination’ from its title. In the longer term it will be responsible for revising the Management Plan.

Much of the technical side of managing the property will come under the auspices of a Partnership Management Agreement (PMA). It will focus on the conservation, maintenance and operation of the bridge itself, will link with the Steering Group and feed into the conservation-related actions in this Management Plan. Indeed, the completion and signing up to the PMA is one of the first actions of the Plan. The PMA itself involves Network Rail, Historic Scotland, Fife Council and City of Edinburgh Council, whose representatives will meet as a group (the PMAG) on a regular basis.
Since its formation under the wing of the Forth Bridges Forum, the Forth Bridge World Heritage Nomination Steering Group has considered the potential pressures, threats and opportunities that face the property. In taking these issues forward, the Steering Group has chosen to address them under the headings developed from the UNESCO Operational Guidelines for World Heritage. These are:

- Conservation and maintenance of the property
- Development
- Presentation – including education, skills and learning, and visitor/tourism pressures
- Natural environmental pressures
- Disasters and risk preparedness

In addition to discussions within the Steering Group, many of these issues emerged within the work commissioned from Rebanks Consulting Ltd in 2012, which is summarised in the report ‘The Forth Bridge World Heritage Nomination: – Realising the Potential Benefits’, completed in January 2013. This was further augmented by feedback received during the public consultation in the summer of 2013. A summary of the key themes that emerged is included below. See www.forthbridgeworldheritage.com.
3.1 Pressures

3.1.1 Issues and Challenges

World Heritage Sites can be complex to manage and protect. In ensuring the effectiveness of management and protection regimes, it is important that there is a clear understanding of the issues and challenges that are likely to present themselves. In the case of the Forth Bridge, two distinct strands emerge. These relate specifically to the Forth Bridge itself, and then to the areas surrounding the bridge which, although not included within the property, may be affected if it is inscribed. This Management Plan therefore aims to address both the conservation of the Forth Bridge and the opportunities, issues and challenges that may arise immediately outside the nominated property.

A key issue that arose at the outset of the nomination process was whether or not there is a need for a Buffer Zone, and of its potential effectiveness were it to be applied. It was concluded that the immense scale and visibility of the bridge is such that a buffer zone would be unnecessary and impracticable. Instead, it was decided that the setting of the bridge can be better protected through the local planning system, and in particular, through the range of designation systems (both natural and historic) that already exist, supported by the use of Key View and Viewshed data (see 5.c.8 in the Nomination). This Management Plan does not therefore provide for a Buffer Zone, but this position can be reviewed during the Plan period if circumstances suggest a change.

Development Pressures

The partners in the Steering Group are aware that, if not properly managed, the impact of inscription might impact on the Forth Bridge as a World Heritage Site, and some of these were highlighted during the public consultation. These could include:

• Potentially harmful alterations or additions to properties within or immediately adjacent to the bridge;
• Destruction of valuable features and views around the bridge in response to pressure from development;
• Influence on the value of property in the neighbourhoods close to the bridge;
• Increased demand for development in the setting of the bridge.

Presentation and Understanding

Promoting appreciation and respect for any World Heritage Site is dependent on effective presentation. A key challenge in the management and promotion of the site will therefore be to develop ways in which the understanding of the bridge, its construction and its past, can translate to a wide audience and generate a range of benefits, not least in education. Part of this will include better understanding of World Heritage, how the bridge compares to others and yet is adjudged as having Outstanding Universal Value.

At present there is very little in the way of physical access or interpretation for visitors. There is also no single focal point for online information, although the Forth Bridges Forum website at www.forthbridgeworldheritage.com now fulfills part of this function. These and other access issues will need to be addressed as part of the management of the property, but the Steering Group has already commissioned a 3D laser scanning survey with a view to providing virtual access to the property, and ways in which physical access might be provided are also already being considered.

Local Community Benefits

A central ambition of this nomination is to examine ways in which World Heritage can help deliver benefits to local communities. At the same time, it will be important to help people understand that World Heritage is not an answer for all issues. Attempting to deliver benefits for the communities will require a strong stakeholder group, a clear direction, co-operation and effective co-ordination between management partners, local communities and other stakeholders.

One key example of an issue on which World Heritage could look to deliver benefits emerged during the consultation on both the north and south banks of the Forth. This was the need to provide better infrastructure in local communities. There was a strong sense that local road and parking infrastructure was already stretched, being constrained by water, but other issues such as public transport and visitor facilities were also cited.
3.a.2. Pressures Affecting the Nominated Property

The table below contains a list of perceived pressures potentially affecting the bridge.

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Status/Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation and Maintenance</td>
<td></td>
</tr>
<tr>
<td>P-1 Prevention of decay – need for ongoing maintenance</td>
<td>Critical to maintaining OUV. Addressed comprehensively by recent Restoration Project</td>
</tr>
<tr>
<td>P-2 Operational issues, such as functional change, including line upgrades and electrification</td>
<td>Should continue to be tackled through normal listed building consent process</td>
</tr>
<tr>
<td>P-3 Inappropriate methods or materials for repairs through lack of understanding, skills or materials, or changing modern standards</td>
<td>Essential for maintaining authenticity/high standards maintained during and prior to the recent restoration project</td>
</tr>
<tr>
<td>P-4 Prioritisation and allocation of resources – maintaining the high standards established by the recent restoration work within tightening budgets</td>
<td>Essential to levels of maintenance and repair</td>
</tr>
<tr>
<td>P-5 Maintenance of management arrangements and standards across partners and contractors to ensure effective implementation</td>
<td>Essential to long-term management. Measures in place</td>
</tr>
<tr>
<td>P-6 Effects of any previous inappropriate repairs or alterations (e.g. the 1990 floodlights scattered all over the bridge were steadily removed in the recent refurbishment)</td>
<td>Repair needed to maintain authenticity. Not perceived to be a significant problem, but previous minor interventions reversed during recent restoration</td>
</tr>
<tr>
<td>P-7 Need for economic activities associated with the bridge to generate income to reinvest in the management and presentation of the bridge</td>
<td>Income-earning capacity not an issue except as part of overall rail network</td>
</tr>
<tr>
<td>Development</td>
<td></td>
</tr>
<tr>
<td>P-8 Maintenance of effective protection of areas adjacent to the bridge through designation and planning policies</td>
<td>Necessary to long-term protection of the setting of the property</td>
</tr>
<tr>
<td>P-9 Potential increase in development pressure in the areas around the bridge, especially in event of inscription</td>
<td>Potential impact on the setting of the property</td>
</tr>
<tr>
<td>P-10 Changes to land use within areas around the bridge, including farming, housing and business development</td>
<td>Potential impact on the setting of the property</td>
</tr>
<tr>
<td>P-11 Loss or change to historic and natural features in the areas around the bridge</td>
<td>Potential impact on the setting of the property</td>
</tr>
<tr>
<td>P-12 Potential alterations or additions to properties close to or immediately adjacent to the bridge</td>
<td>Impact on the value and presentation of the property</td>
</tr>
<tr>
<td>P-13 Increased vehicular and pedestrian traffic in the communities around the bridge</td>
<td>A growing pressure on local services and infrastructure, even prior to the nomination</td>
</tr>
<tr>
<td>Environmental Pressures</td>
<td></td>
</tr>
<tr>
<td>P-21 Management of the potential impact on natural designated sites near to the bridge</td>
<td>Important layer of statutory protection in the conservation of the setting of the property</td>
</tr>
<tr>
<td>P-22 Climate change impact: sea level change</td>
<td>The anticipated rises in sea level are not a threat to the bridge</td>
</tr>
<tr>
<td>P-23 Climate change impact: more intense precipitation</td>
<td>The increasing intensity of precipitation is not a threat to the bridge, but may affect the stretches of railway beyond each of its ends</td>
</tr>
<tr>
<td>P-24 Encroachment of vegetation onto the fabric of the property</td>
<td>Maintenance programmes are in place to prevent the establishment of vegetation in the fabric of the bridge</td>
</tr>
<tr>
<td>P-25 Birds nesting on the structure, and the associated build-up of detritus and corrosive guano</td>
<td>Maintenance programmes are in place to prevent the accumulation of debris and waste from birds on the bridge</td>
</tr>
<tr>
<td>Disasters and Risk Preparedness</td>
<td></td>
</tr>
<tr>
<td>P-26 Storm damage, particularly high winds</td>
<td>The bridge has a history of sustaining storm force weather conditions over its 124-year life, including wind speeds in excess of 177 kph without any detrimental structural effects. Evidence of the strength inherent in the bridge design. The structural condition of the bridge is constantly monitored, with specific visual inspections in the aftermath of heavy storms</td>
</tr>
<tr>
<td>P-27 Collision of rail traffic on the bridge</td>
<td>Network Rail operates a modern signalling system to ensure separation of trains. It also has contingency plans that are ready to come into operation in the event of a collision or other serious incident on the bridge. Arrangements vary depending on the incident, but all emergency services are conversant with the bridge structure. Furthermore, arrangements exist between Network Rail and train operating companies to supply rail-mounted support as necessary</td>
</tr>
<tr>
<td>P-28 Collision of river/ocean-going vessel or aircraft with the piers or spans of the bridge</td>
<td>All major craft in the Firth of Forth are marshalled by The Forth Ports Authority along strict navigation channels and bearings. Geologically and topographically, the bed profile is understood to offer the bridge good protection. All aircraft in OR air space are controlled by National Air Traffic Services which ensures aircraft fly well clear of the bridge. Even so, Network Rail maintains contingency plans that are ready to come into operation in the highly unlikely event of the collision of a ship, boat or aircraft with the bridge. This includes response from all emergency services including the Royal National Lifeboat Institute (RNLI) whose life boat station is located immediately beside the bridge</td>
</tr>
<tr>
<td>P-29 Visitor incidents, including trespass, wilful damage</td>
<td>All organised visits take place under the direct control of Network Rail and its Principal Contractor. A full briefing and support arrangement is in place for any emergency that can arise. Security of the property is provided by full fencing of land-accessible areas. Railway stations at either end of the bridge are monitored by closed circuit security cameras</td>
</tr>
</tbody>
</table>
3.b Opportunities for Improvement / Benefits

World Heritage Site listing does not automatically deliver benefits to the site in question or to its local communities. There are, however, significant opportunities and benefits that can be achieved if the site is managed well.

Rebanks Consulting suggests that if the Forth Bridge becomes a World Heritage Site, its inscription can be used in an innovative and progressive manner that ensures it can be a leading example of a sustainable World Heritage Site which delivers significant benefits both for its local communities, and for a much wider audience with potential interest in the site.

With these observations in mind, the table below includes possible opportunities that have been identified by the Steering Group and which have the potential to enhance the conservation and presentation of the property. The priority column on the right side of the table indicates whether implementation is in progress or will be carried out at the earliest opportunity, in the short term (years one, two and three of the Action Plan) or in the longer term.

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Status / Comment / Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-1 Development of a Partnership Management Agreement (PMA) for the Forth Bridge to tackle statutory listed building consent cases as efficiently and effectively as possible, and to manage issues such as line upgrades, electrification and visitor access.</td>
<td>Planning in progress. Action anticipated from Year 1</td>
</tr>
<tr>
<td>O-2 Review heritage protection designation to update Listing and consider all elements of the bridge.</td>
<td>Completed in 2013</td>
</tr>
<tr>
<td>O-3 Develop a Landscape Plan from the Viewshed and Viewpoint photographic data to set out a strategy for managing views and visual access, to improve the landscape setting by vegetation management and inform land-use planning decisions in the areas around the property.</td>
<td>Initial analysis complete</td>
</tr>
<tr>
<td>O-4 Explore with transport companies, regulators, local authorities and local communities the development of better co-ordinated sustainable public transport to and around the property.</td>
<td>Year 1 priority</td>
</tr>
<tr>
<td>O-5 With the Forth Bridges Forum, consider the implications for road traffic access to the two communities adjacent to the property and the existing Forth Road Bridge and the new Queensferry Crossing.</td>
<td>Year 2 priority. Issues will include the ease with which passing motorway traffic can access the Queensferry, and the use to which the Forth Road Bridge will be put.</td>
</tr>
<tr>
<td>O-6 Investigate the possibility of repairing and re-instating piers adjacent to the property, and actively promoting rail-based transport.</td>
<td>Year 1 priority</td>
</tr>
<tr>
<td>O-7 Use the Nomination and potential inscription as a means of cementing relationships between the communities on each side of the Forth.</td>
<td>Ongoing</td>
</tr>
<tr>
<td>O-8 Forge closer community links by engaging more formally with and revising local Heritage Trusts, creating an ongoing programme of activities and events.</td>
<td>Proposal commencing in Year 2</td>
</tr>
<tr>
<td>O-9 Work towards the creation of a must-see international tourist attraction with enhanced visitor facilities and interpretation, transforming the property into attraction in its own right.</td>
<td>Year 1 onwards developed by Network Rail</td>
</tr>
<tr>
<td>O-10 Develop an Audience Development Plan examining how the presentation of the bridge can be improved, and to whom. This will inform some of the specific initiatives that might emanate from the opportunities listed here.</td>
<td>Planning in progress. Action anticipated from Year 1</td>
</tr>
<tr>
<td>O-11 Consider developing physical access onto the property, to include people with different physical abilities, incorporating strong educational content and high-quality presentation.</td>
<td>Pilot survey completed 2013. Action anticipated from Year 1</td>
</tr>
<tr>
<td>O-12 Develop a Landscape Plan from the Viewshed and Viewpoint photographic data to set out a strategy for managing views and visual access, to improve the landscape setting by vegetation management and inform land-use planning decisions in the areas around the property.</td>
<td>Initial analysis complete</td>
</tr>
<tr>
<td>O-13 Explore with transport companies, regulators, local authorities and local communities the development of better co-ordinated sustainable public transport to and around the property.</td>
<td>Year 1 priority</td>
</tr>
<tr>
<td>O-14 With the Forth Bridges Forum, consider the implications for road traffic access to the two communities adjacent to the property and the existing Forth Road Bridge and the new Queensferry Crossing.</td>
<td>Year 2 priority. Issues will include the ease with which passing motorway traffic can access the Queensferry, and the use to which the Forth Road Bridge will be put.</td>
</tr>
<tr>
<td>O-15 Investigate the possibility of repairing and re-instating piers adjacent to the property, and actively promoting rail-based transport.</td>
<td>Year 1 priority</td>
</tr>
<tr>
<td>O-16 Use the Nomination and potential inscription as a means of cementing relationships between the communities on each side of the Forth.</td>
<td>Ongoing</td>
</tr>
<tr>
<td>O-17 Forge closer community links by engaging more formally with and revising local Heritage Trusts, creating an ongoing programme of activities and events.</td>
<td>Proposal commencing in Year 2</td>
</tr>
<tr>
<td>O-18 Work towards the creation of a must-see international tourist attraction with enhanced visitor facilities and interpretation, transforming the property into attraction in its own right.</td>
<td>Year 1 onwards developed by Network Rail</td>
</tr>
<tr>
<td>O-19 Develop an Audience Development Plan examining how the presentation of the bridge can be improved, and to whom. This will inform some of the specific initiatives that might emanate from the opportunities listed here.</td>
<td>Planning in progress. Action anticipated from Year 1</td>
</tr>
<tr>
<td>O-20 Develop an interpretation style and strategy (with associated branding) to ensure consistency of signage and mobile interpretation.</td>
<td>Year 1 priority</td>
</tr>
<tr>
<td>O-21 Develop an interpretation style and strategy (with associated branding) to ensure consistency of signage and mobile interpretation.</td>
<td>Year 1 priority</td>
</tr>
<tr>
<td>O-22 Develop a Landscape Plan from the Viewshed and Viewpoint photographic data to set out a strategy for managing views and visual access, to improve the landscape setting by vegetation management and inform land-use planning decisions in the areas around the property.</td>
<td>Initial analysis complete</td>
</tr>
<tr>
<td>O-23 Explore with transport companies, regulators, local authorities and local communities the development of better co-ordinated sustainable public transport to and around the property.</td>
<td>Year 1 priority</td>
</tr>
<tr>
<td>O-24 With the Forth Bridges Forum, consider the implications for road traffic access to the two communities adjacent to the property and the existing Forth Road Bridge and the new Queensferry Crossing.</td>
<td>Year 2 priority. Issues will include the ease with which passing motorway traffic can access the Queensferry, and the use to which the Forth Road Bridge will be put.</td>
</tr>
<tr>
<td>O-25 Investigate the possibility of repairing and re-instating piers adjacent to the property, and actively promoting rail-based transport.</td>
<td>Year 1 priority</td>
</tr>
<tr>
<td>O-26 Use the Nomination and potential inscription as a means of cementing relationships between the communities on each side of the Forth.</td>
<td>Ongoing</td>
</tr>
<tr>
<td>O-27 Forge closer community links by engaging more formally with and revising local Heritage Trusts, creating an ongoing programme of activities and events.</td>
<td>Proposal commencing in Year 2</td>
</tr>
<tr>
<td>O-28 Work towards the creation of a must-see international tourist attraction with enhanced visitor facilities and interpretation, transforming the property into attraction in its own right.</td>
<td>Year 1 onwards developed by Network Rail</td>
</tr>
</tbody>
</table>
Section 4 – Dealing with the Issues

4.a Proposed Actions

This Section presents actions in response to each of the pressures identified in Section 3.a for inclusion in the Action Plan. Some actions also relate to opportunities from Sections 3.b. As in Section 3, the priority column indicates whether implementation is in progress or will be carried out at the earliest opportunity, in the short term (years two and three of the Action Plan) or in the longer term.

<table>
<thead>
<tr>
<th>Issue</th>
<th>Proposed Actions</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation & Maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-1 Prevention of decay – need for ongoing maintenance.</td>
<td>Already part of Network Rail’s management regime for the property.</td>
<td>Constant – in progress</td>
</tr>
<tr>
<td>P-2 Operational issues, such as functional change, including line upgrades, electrification, and potential visitor access.</td>
<td>O-1 - To be accommodated within a Partnership Management Agreement that is being drawn up between Network Rail, Fife and City of Edinburgh Councils, and Historic Scotland. Experience in other World Heritage sites such as in the Historic Centre of Porto suggests that electrification would have minimal impact on the property.</td>
<td>Nearing completion</td>
</tr>
<tr>
<td>P-3 Inappropriate methods or materials for repairs through lack of understanding, skills or materials, or changing modern standards.</td>
<td>Network Rail’s maintenance and management regime maintains high standards of conservation.</td>
<td>Not perceived to be a problem – standards constantly monitored.</td>
</tr>
<tr>
<td>P-4 Prioritisation and allocation of resources – maintaining the high standards established by the recent restoration work within tightening budgets.</td>
<td>Following the completion of the recent restoration work, resources have been set aside for continued annual maintenance (approximately £1.2 million per annum – i.e. £1.0 million for maintenance and c. £0.2 million on annual structural inspections).</td>
<td>Constant – in progress</td>
</tr>
<tr>
<td>P-6 Maintenance of management arrangements and standards across partners and contractors to ensure effective implementation.</td>
<td>High standards are maintained and monitored both by Network Rail and its contractors, currently Balfour Beatty. This is a statutory requirement because the property is an operational structure.</td>
<td>Constant – in progress</td>
</tr>
<tr>
<td>P-5 Effects of any previous inappropriate repairs or alterations.</td>
<td>Considered to be minimal, and where possible, reversed during the recent restoration programme.</td>
<td>Not considered to be a problem</td>
</tr>
<tr>
<td>P-7 Need for economic activities associated with the bridge to generate income to reinvest in the management and presentation of the bridge.</td>
<td>There is no pressure for the property to generate its own income. Its maintenance is resourced directly from Network Rail as part of its wider maintenance programmes, which itself is supported by funding from the Scottish Government.</td>
<td>Not considered to be an issue or practicable</td>
</tr>
<tr>
<td>Issue</td>
<td>Proposed Actions</td>
<td>Priority</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>P-8</td>
<td>Maintain effective protection of the areas adjacent to the bridge through designations and planning policies. D-2 - Ensure heritage protection designations are kept up-to-date. D-3 - develop a Landscape Plan to help protect the setting of the property.</td>
<td>In progress</td>
</tr>
<tr>
<td>P-9</td>
<td>Potential increase in development pressures in the areas around the bridge, especially in anticipation of inscription. Make sure that existing planning systems and associated designations are observed and implemented.</td>
<td>In progress</td>
</tr>
<tr>
<td>P-10</td>
<td>Changes to land use within the areas around the bridge, including forestry, housing and business development. As P-3 above - make sure that existing planning systems and associated designations are observed and implemented.</td>
<td>In progress</td>
</tr>
<tr>
<td>P-11</td>
<td>Loss of undesignated features in the areas around the bridge. As P-3 above - most significant historic features near to the property should be protected by Conservation Areas, and therefore covered by existing planning systems.</td>
<td>In progress</td>
</tr>
<tr>
<td>P-12</td>
<td>Potential alterations or additions to properties close to or immediately adjacent to the bridge, if not adequately controlled. As P-3 above - make sure that existing planning systems and associated designations are observed and implemented.</td>
<td>In progress</td>
</tr>
<tr>
<td>P-13</td>
<td>Increased vehicular and pedestrian traffic in the communities around the bridge. O-4 - work towards the development of an integrated public transport system. O-5 - Forth Bridges Forum to consider the role of the two Forth road bridges in the management of traffic in the communities. O-6 - investgate repairing and bringing into use more piers and encouraging more river boat traffic. O-7 - levy in more funding for local infrastructure.</td>
<td>In progress</td>
</tr>
</tbody>
</table>

Presentation – Education, Learning, and Visitors/Tourism

<table>
<thead>
<tr>
<th>Issue</th>
<th>Proposed Actions</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-14</td>
<td>Need to develop the presentation of the Outstanding Universal Value – how to get the story across.</td>
<td>Year 1</td>
</tr>
<tr>
<td>P-15</td>
<td>Need to continue engaging the local community to support the property. O-8 - cementing relationships between the communities at the north and south ends of the property. O-9 - forging closer community links, especially via Local Heritage Trusts.</td>
<td>In progress</td>
</tr>
<tr>
<td>P-16</td>
<td>Need to maintain health and safety for visitors both to the property and to the surrounding area without compromising the historic fabric. Establish a monitoring regime which measures changes in traffic within each local community and identifies risks and hazards that need to be addressed.</td>
<td>Year 1</td>
</tr>
<tr>
<td>P-17</td>
<td>Need to ensure long-term sustainable access without congestion, erosion, damage or compromised safety. Actions as for P-13 above. Review public transport provision (O-4), and consider virtual means of gaining access to the property (O-13), as well as the development of a dedicated website (O-20). At the same time, it will be important to improve and maintain visibility from key viewpoints (O-15).</td>
<td>Year 1</td>
</tr>
<tr>
<td>P-18</td>
<td>Need to improve physical and non-physical accessibility to the property. O-12 and O-13 - Consider developing physical and virtual access to the property, to include people with different physical abilities, incorporating strong educational content and high-quality presentation. This could evolve into a "must-see" international tourist attraction (O-10), and through the development of off-site marketing and pre-visit information (O-18).</td>
<td>In progress</td>
</tr>
</tbody>
</table>

Natural Environment

<table>
<thead>
<tr>
<th>Issue</th>
<th>Proposed Actions</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-21</td>
<td>Management of the potential impact on natural designated sites near to the Bridge.</td>
<td>Routine monitoring of the shoreline and other designated areas, in collaboration with local organisations, Scottish Natural Heritage and other national bodies. Year 1-6</td>
</tr>
<tr>
<td>P-22</td>
<td>Climate change impact: sea level change, increases in storminess and sea level rise and consequent increases in coastal erosion; torrential rain and flooding.</td>
<td>No impact on the property is anticipated as this is a resilient structure intended to stand in the sea. On-going monitoring</td>
</tr>
<tr>
<td>P-23</td>
<td>Climate change impact: more intense precipitation; changes to wetting and drying cycles.</td>
<td>No impact on the property is anticipated as steel is protected against surface corrosion, the masonry is substantial and the joints are tight. On-going monitoring</td>
</tr>
<tr>
<td>P-24</td>
<td>Encroachment of vegetation onto the fabric of the property. Vegetation encroachment onto the structure of the property will be tackled through the routine maintenance regime.</td>
<td>On-going monitoring in progress</td>
</tr>
<tr>
<td>P-25</td>
<td>Birds nesting on the structure, and the associated debris and waste from nesting birds on the structure of the property will be tackled through the routine maintenance regime.</td>
<td>On-going monitoring in progress</td>
</tr>
</tbody>
</table>

Disasters and Risk Preparedness

<table>
<thead>
<tr>
<th>Issue</th>
<th>Proposed Actions</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-19</td>
<td>Need for enhanced visitor facilities. In addition to O-12 and O-13 in P-18 above, the possibility of developing enhanced visitor facilities in each community should also be considered. In an educational context, this should include the development of education modules to help younger visitors appreciate the property (O-19).</td>
<td>Years 1 to 6</td>
</tr>
<tr>
<td>P-20</td>
<td>Anti-social behaviour, litter and graffiti. Routine monitoring within both communities, and in the vicinity of the property.</td>
<td>Years 1-6</td>
</tr>
</tbody>
</table>

Note: The table includes issues and proposed actions related to the development, natural environment, and disasters and risk preparedness.
Section 5 – Long-Term Vision

5.a Management Vision

Using information gathered through community engagement and the public consultation in 2013, the Steering Group has worked together to develop a vision of how both the property should be managed in the future, and how the benefits of World Heritage listing might be harnessed if the nomination is successful.

The intention is that this will guide the implementation and future revision of the Management Plan. Establishing a clear vision is an essential means of ensuring that a World Heritage Site can be effectively managed and protected, whilst also delivering benefits for its local communities. As part of this process, it is important that management partners and local communities understand what World Heritage listing might achieve, if everyone works towards those goals.

The creation of an agreed vision also allows for the development of a framework of longer-term aims, which in turn informs the priorities for medium-term objectives, based on the analysis of key current issues.

In the case of the Forth Bridge, the excellent state of the bridge itself following Network Rail’s recent restoration programme allows more of a focus on wider benefits that World Heritage inscription might bring.

The Vision on which this Management Plan has been founded has been captured in the words of James Rebanks at the introductory section of this document. In practical terms, this can be summarised in terms of the following specific aims:

• To manage the property in a sustainable manner which conserves, enhances and promotes its Outstanding Universal Value both within and around the Site itself, but also at a national and international scale.

• To carefully balance the requirements of protection and conservation against the need for access to the property and the interests of the local communities in encouraging sustainable economic growth.

• To engage with and deliver benefits to the local communities around the property whilst also minimising any negative effects that might follow a successful nomination.

• To develop opportunities for education and learning, especially in the context of the adjacent road bridges.

• To generate income and employment that adds value to the local economy and can contribute to the conservation and promotion of the property.

Opposite: View looking south from the top of the Fife tower, also showing the central tower of the Bridge, and Inchgarvie island, July 2013. (© Crown Copyright, reproduced Courtesy of Historic Scotland. www.historicscotlandimages.gov.uk www.glasgowspe, sbys_3649)
5.b Management Principles

Realisation of the above vision will require the appropriate management of the property and its surroundings. This in turn will depend upon an active cycle of research, recording, monitoring, planning, and review. With this in mind, and drawing on the experience of existing World Heritage Sites, the Steering Group has identified a number of Management Principles which it intends to help shape the Action Plan in Section 6. These actions relate closely to the Pressures and Opportunities already identified in Sections 3 and 4.

Identification
• to conduct further research and surveys as required to improve knowledge and understanding of the property

Protection
• to review the statutory protection of the property, and where appropriate, in the areas adjacent to the site

Conservation
• to maintain, and where desirable enhance the system of assessment and monitoring of the state of conservation of the property already implemented by Network Rail
• to build on the extensive recent restoration work, prioritising essential maintenance works to ensure an appropriate state of conservation of the property, securing additional resources where necessary; and
• to develop and implement effective management measures for all identified environmental pressures, disasters and risks to the property.

Presentation
• to implement sustainable visitor management to improve the attractiveness of the property and the surrounding area to visitors without detriment to its Outstanding Universal Value and to the quality of life of the communities living around the bridge; and
• to develop improved interpretation to foster wider understanding and appreciation of the property and present its values to a wide range of audiences.

Community Benefit
• to improve the local transport and infrastructure of the areas around the bridge not only to facilitate tourism and other business opportunities, but also for the benefit of the local communities.

Transmission to Future Generations
• to further engage the local communities and a wider audience in the promotion and appreciation of the property, helping them to harvest the benefits of potential inscription both now and in the future.

Management
• to ensure that the efforts and resources of all partners and stakeholders are properly co-ordinated and work towards the achievement of the Vision; and
• to routinely monitor progress and regularly report on the condition of the property, developments in the areas adjacent to the site, and other sensitive areas relating to its wider setting.
Section 6 – Strategic Action Plan for the First Six Years

This Action Plan is designed to mesh with the requirements of the standard reporting cycle to UNESCO for World Heritage Sites. It attempts to organise and prioritise the actions identified by the Steering Group under the headings defined by the issues and management principles as laid out in Sections 4 and 5 (above). The Action Plan comprises actions that have been recognised in 2014 as being essential for the successful management of the property and the delivery of the agreed Vision. Inevitably, details of these actions are subject to revision based on further evidence, consultation or experience during the six years of the Action Plan. Those that relate to the first year of the Plan presented in Section 9.

Action Timescale/Group

<table>
<thead>
<tr>
<th>Action</th>
<th>Identification</th>
<th>Protection</th>
<th>Conservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID-1</td>
<td>In the interests of education and the promotion of the site, build on the work of the Comparative Study and further analyse the position of the property amongst the World’s most important historic bridges.</td>
<td>PRO-1</td>
<td>Draft and agree a Partnership Management Agreement (PMA) which defines and improves the processes through which consent is achieved for works on the property.</td>
</tr>
<tr>
<td>ID-2</td>
<td>Conduct a survey to confirm the existence and location of the most important surviving records across the world relating to the property.</td>
<td>PRO-2</td>
<td>To define and agree standards of maintenance through the Partnership Management Agreement Group, developing a formal Conservation Management Plan.</td>
</tr>
<tr>
<td>PRO-1</td>
<td>Conduct a review of the designation of the property. Reconsider if necessary during the lifetime of the Plan.</td>
<td>PRO-3</td>
<td>Ensure that conserving the property and its wider setting is properly integrated into Local Development Plans and Frameworks.</td>
</tr>
<tr>
<td>PRO-2</td>
<td>Review the appraisals of the bridgehead Conservation Areas as required. This is more urgent on the south bank of the Forth where the Conservation Area Appraisal is 12 years old, and less so in Fife where it is only a year old.</td>
<td>PRO-4</td>
<td>Assess the need to review other designated sites and areas within the setting of the property.</td>
</tr>
<tr>
<td>PRO-3</td>
<td>Review the appraisals of the bridgehead Conservation Areas as required. This is more urgent on the south bank of the Forth where the Conservation Area Appraisal is 12 years old, and less so in Fife where it is only a year old.</td>
<td>CON-1</td>
<td>To define and agree standards of maintenance through the Partnership Management Agreement Group, developing a formal Conservation Management Plan.</td>
</tr>
<tr>
<td>PRO-4</td>
<td>Assess the need to review other designated sites and areas within the setting of the property.</td>
<td>CON-2</td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>Timescale/Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CON-3</td>
<td>To agree a system of monitoring of the property which feeds directly into the State of Conservation reporting process.</td>
<td>Year 1 PMAG</td>
<td></td>
</tr>
<tr>
<td>CON-4</td>
<td>Future maintenance and other works to be aligned with the agreed Conservation Management Plan.</td>
<td>Years 1-6 PMAG</td>
<td></td>
</tr>
<tr>
<td>CON-5</td>
<td>Continue to undo previous inappropriate repairs or alterations as appropriate.</td>
<td>Years 1-6 Network Rail</td>
<td></td>
</tr>
<tr>
<td>CON-6</td>
<td>Manage anti-social side effects of public access (legal and otherwise), such as graffiti and litter, metal theft etc.</td>
<td>Years 1-6 Network Rail</td>
<td></td>
</tr>
<tr>
<td>CON-7</td>
<td>Monitor changes to the key views in order to review the need for a defined Buffer Zone.</td>
<td>Years 3-6 Fife and City of Edinburgh Councils, Historic Scotland</td>
<td></td>
</tr>
<tr>
<td>CON-8</td>
<td>Monitor the need for an enhanced View cone and Viewshed analysis to better implement protection of the setting of the property. View cones to consider the appropriateness of planned built elements in defined vertical and horizontal planes.</td>
<td>Years 3-6 Fife and City of Edinburgh Councils, Historic Scotland</td>
<td></td>
</tr>
<tr>
<td>CON-9</td>
<td>Maintain existing site emergency arrangements between operators, the local authorities, the emergency services and the Scottish Government, and review as levels of public access evolve.</td>
<td>Years 1-6 PMAG</td>
<td></td>
</tr>
<tr>
<td>CON-10</td>
<td>CRMM: Review the Historic Buildings Fire Database Record prepared in 2006 with specific notes about railway procedures and alternative water supply. Consider full fire or other risk assessment.</td>
<td>Years 3-6. Network Rail, HS and Fire Scotland</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRES-1</td>
<td>To develop a site-wide Audience Development Plan, assessing how the property can be better presented, and the need to manage and improve infrastructure to reap the benefits of increased visitor numbers whilst minimising the negative impact on local communities.</td>
<td>Year 1+ Steering Group</td>
<td></td>
</tr>
<tr>
<td>PRES-2</td>
<td>Consider the possibility of developing visitor access onto the property.</td>
<td>Year 1 Network Rail</td>
<td></td>
</tr>
<tr>
<td>PRES-3</td>
<td>Develop a consistent site-wide signage and interpretation strategy.</td>
<td>Years 1-6 Steering Group</td>
<td></td>
</tr>
<tr>
<td>PRES-4</td>
<td>Develop off-site marketing and pre-visit information through existing and potential new routes through Tourist Information Centres, websites and social media.</td>
<td>Years 1-6 Visit Scotland, with the Steering Group</td>
<td></td>
</tr>
<tr>
<td>PRES-5</td>
<td>Develop mobile interpretation using guidebooks and digital media.</td>
<td>Year 2+ Steering Group</td>
<td></td>
</tr>
<tr>
<td>PRES-6</td>
<td>Conduct a laser-scan survey of the property and create a 3D model for a wide range of uses including education, virtual tourism, and asset management.</td>
<td>Year 1+ (pilot survey completed) Historic Scotland</td>
<td></td>
</tr>
<tr>
<td>PRES-7</td>
<td>Create interpretation panels for deployment at key viewpoints around the property.</td>
<td>Year 2+ Steering Group</td>
<td></td>
</tr>
<tr>
<td>PRES-8</td>
<td>Introduce a programme of vegetation management around key public viewpoints.</td>
<td>Years 1-6 Fife and City of Edinburgh Councils, Historic Scotland</td>
<td></td>
</tr>
<tr>
<td>PRES-9</td>
<td>Further integrate views of the property into national bicycle networks and local footpaths and trails, existing and those being developed such as the Forth Valley Heritage Trail.</td>
<td>Years 1-5 Steering Group</td>
<td></td>
</tr>
<tr>
<td>PRES-10</td>
<td>Co-ordinate presentation of the property with promotional activities and events supporting the Forth Road Bridge and the Queensferry Crossing.</td>
<td>Years 1-6 Steering Group</td>
<td></td>
</tr>
<tr>
<td>PRES-11</td>
<td>Develop a World Heritage package involving Scotland's existing World Heritage sites, and where possible, linking with international World Heritage sites and cultural routes like ERH.</td>
<td>Year 2 Historic Scotland; Visit Scotland</td>
<td></td>
</tr>
<tr>
<td>Community Benefit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-1</td>
<td>In anticipation of further increases in visitors, initiate an infrastructure review, to include roads and parking, in both Queensferry and North Queensferry, as well as in adjacent areas where capacity might be available.</td>
<td>Year 1+ Transport Scotland, Fife and City of Edinburgh Councils</td>
<td></td>
</tr>
<tr>
<td>CB-2</td>
<td>Carry out a review of public transport (co-ordinated with PRES-9) serving the communities at both ends of the property, to include ways in which it can be better integrated and improved to help accommodate an anticipated increase in visitors.</td>
<td>Year 1+ Transport Scotland, Fife and City of Edinburgh Councils</td>
<td></td>
</tr>
<tr>
<td>Transmission to Future Generations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRA-1</td>
<td>Bring together community groups around the property (on both sides of the Forth) and develop an integrated programme of activities and events.</td>
<td>Years 1-6 Steering Group</td>
<td></td>
</tr>
<tr>
<td>TRA-2</td>
<td>Widen existing educational activity relating to the property in support of local schools and colleges.</td>
<td>Years 1-6 Steering Group</td>
<td></td>
</tr>
<tr>
<td>TRA-3</td>
<td>Develop education modules for inclusion within Scotland's Curriculum for Excellence, and within Scanrail(Scottish Cultural Resources Access Network).</td>
<td>Years 2-3 Steering Group</td>
<td></td>
</tr>
<tr>
<td>TRA-4</td>
<td>Promote knowledge and appreciation of the property through existing railway heritage networks.</td>
<td>Years 2-6 Network Rail</td>
<td></td>
</tr>
<tr>
<td>TRA-5</td>
<td>In partnership with the Institution of Civil Engineers, promote awareness, appreciation and scholarship in support of the property, especially amongst emerging generations of professional engineers.</td>
<td>Years 2-6 Steering Group</td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAN-1</td>
<td>Following the submission of the nomination dossier, maintenance of the Forth Bridge World Heritage Steering Group at least until the decision by the World Heritage Committee in 2015.</td>
<td>Year 1+ Steering Group</td>
<td></td>
</tr>
<tr>
<td>MAN-2</td>
<td>The Steering Group to seek out sources of external funding to help further the aims of the Management Plan.</td>
<td>Years 1-6 Steering Group</td>
<td></td>
</tr>
<tr>
<td>MAN-3</td>
<td>The Steering Group to monitor the impact of the Nomination and potential inscription on local communities around the property.</td>
<td>Years 1-6 Steering Group</td>
<td></td>
</tr>
<tr>
<td>MAN-4</td>
<td>The Steering Group to continue to manage the dedicated website at www.forthbridgeworldheritage.com.</td>
<td>Years 1-6 Transport Scotland</td>
<td></td>
</tr>
<tr>
<td>MAN-5</td>
<td>The Steering Group to act upon the recommendations of the Audience Development Plan (PRES-1).</td>
<td>Years 2-6 Steering Group</td>
<td></td>
</tr>
<tr>
<td>MAN-6</td>
<td>The Steering Group to ensure that the property (and this Management Plan, including later revisions) is properly included in any future Development Plans, planning policies, revisions etc. in both Fife and City of Edinburgh.</td>
<td>Years 1-6 Fife, City of Edinburgh and West Lothian Councils</td>
<td></td>
</tr>
<tr>
<td>MAN-7</td>
<td>The Steering Group to seek sources of funding (internal and external) to fund a full 3D digital survey (and the creation of a 3D digital model) of the property (PRES-6).</td>
<td>Year 1 Historic Scotland</td>
<td></td>
</tr>
<tr>
<td>MAN-8</td>
<td>The Steering Group to seek funding to support the development of visitor facilities that provide access to the property.</td>
<td>Year 1 Network Rail</td>
<td></td>
</tr>
<tr>
<td>MAN-9</td>
<td>The Steering Group to seek to ensure that existing levels of resources provided for the conservation and operation of the property are, at the very least, maintained in the coming years.</td>
<td>Years 1-6 Network Rail and Transport Scotland</td>
<td></td>
</tr>
<tr>
<td>MAN-10</td>
<td>Through business communities, actively explore means by which the property can act as a positive socio-economic driver in the local communities.</td>
<td>Years 1-6 Steering Group</td>
<td></td>
</tr>
<tr>
<td>MAN-11</td>
<td>Assess the need to have a World Heritage Site co-ordinator dedicated to the site.</td>
<td>Year 2 Steering Group</td>
<td></td>
</tr>
</tbody>
</table>
Following the submission of the Nomination Dossier in January 2014, the Steering Group will remain in place at least until the decision of the World Heritage Committee in 2015. It will continue to meet at regular intervals, and will oversee the implementation of the first actions outlined in this Management Plan. As its work evolves, the Steering Group will consider whether or not it should remain in place following potential inscription, or if a new governance structure is necessary.

If the property deferred, referred (to the State Party) or rejected from inclusion in the World Heritage List, the title and purpose of the group will be reviewed. Many of the management actions in respect of monitoring the bridge, monitoring change through the Partnership Management Agreement, and in safeguarding setting through existing designations, will continue in any case.

The group currently comprises representatives from:
- Network Rail (as owner of the property)
- Transport Scotland (Chair)
- Historic Scotland
- City of Edinburgh Council and Fife Council (the local authorities)
- Visit Scotland (the national tourism organisation)
- FETA (Forth Estuary Transport Authority)
- Queensferry & District and North Queensferry Community Councils
- Queensferry Ambition
- North Queensferry Heritage Trust

This group has already worked together to deliver the nomination, and the intention is that it continues to collaborate, taking forward this Management Plan. In doing so, the plan will evolve, and the membership of the group may broaden, involving, for example, other business organisations and adjacent council areas.
A core priority will inevitably be the conservation, maintenance and operation of the nominated property itself, and a central element within this process will therefore be the implementation of a Partnership Management Agreement (PMA) as part of this Management Plan. The completion and signing up to the PMA is one of the first actions of the Plan, and specifically involves the following members of the Steering Group:

- Network Rail
- Historic Scotland
- Fife Council
- City of Edinburgh Council

The specific function of the PMA is to ensure the safe and efficient operation of the bridge by monitoring, and where appropriate, consenting any works that are required, whilst at the same time protecting its integrity, and specifically, its Outstanding Universal Value. A group comprising the PMA partners meets regularly to ensure that the management of the property itself, leaving the broader issues relating to the stakeholders more generally to be covered by the Steering Group.

With the continuation of the Steering Group after the submission of the Nomination to UNESCO in early 2014, the only significant change will be the implementation of the Partnership Management Agreement, and the introduction of regular meetings of the partners. The PMA will therefore in effect cover the technical management of the property itself, leaving the broader issues relating to the stakeholders more generally to be covered by the Steering Group.

For the property itself, Network Rail has earmarked an annual budget of £1 million to support the continued maintenance and conservation of the property. In addition, there will be weekly maintenance of the track and fittings as part of the overall railway maintenance at further cost of approximately £0.2 million per annum. Overall, these works therefore cover ‘Permanent Way’ teams from Network Rail itself, with the support of experienced and sometimes specialist contractors. These include multi-disciplined rope-access technicians, railway safety-critical specialist staff, steelwork and protective coatings specialists, and most important, safety management of those working on the bridge through the Principal Contractor, Balfour Beatty.

The Steering Group has resourced financially and in kind, the support required in the preparation, economic research, outreach, consultation and publication of the nomination. Any surplus funds that exist following the submission will be used to capitalise on this work, to support the continuing activities of the Group, in furtherance of the actions outlined in this Management Plan.
In accordance with Article 29 of the World Heritage Convention, the Department for Culture, Media and Sport, on behalf of the United Kingdom Government, must produce periodic reports on the legislative and administrative provisions and state of conservation of a World Heritage Site every six years. To assist in this process, key indicators for measuring quantitatively and qualitatively the state of conservation have been established in the Management Plan for the Forth Bridge. They will be monitored within the six-year periodic reporting time scale of the World Heritage Convention and guided by best practice. The results will be used to assess the implementation of the Strategic Action Plans detailed in this Management Plan.

The nominated property is a single structure which is an important part of an operating national railway network. The constant monitoring of its condition is therefore a statutory requirement, with Network Rail routinely reporting to the Office of Rail Regulation.

Section 8 – Monitoring

8.a Key Indicators for Measuring the State of Conservation

8.a.1 Listed Buildings

The Forth Bridge is a Category ‘A’ listed building. It does not currently feature in the Buildings at Risk Register.

8.a.2 Network Rail Inspections

A system of inspections is already in place as part of the routine maintenance programme, the information from which is recorded in the Civil Asset Register and electronic Reporting System (CARRS).

8.a.3 Monitoring Within the Areas Adjacent to the Property

The Forth Bridge World Heritage Nomination Steering Group will be responsible for monitoring the impact of potential inscription and the progress of the various actions outlined in Section 6.
The actions identified below are derived from the Strategic Action Plan in Section 6. They relate only to the first year of the Plan, and therefore the numbers of the Actions in this particular table are not necessarily consecutive.

<table>
<thead>
<tr>
<th>Action</th>
<th>Timescale/Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection</td>
<td></td>
</tr>
<tr>
<td>PRO-2</td>
<td>Ensure that the property and its wider setting are properly integrated into Local Development Plans and Frameworks</td>
</tr>
<tr>
<td>Conservation</td>
<td></td>
</tr>
<tr>
<td>CON-2</td>
<td>To define and agree standards of maintenance through the Partnership Management Agreement Group, developing a formal Conservation Management Plan</td>
</tr>
<tr>
<td>CON-9</td>
<td>To agree a system of monitoring of the property which feeds directly into the State of Conservation reporting process</td>
</tr>
<tr>
<td>CON-4</td>
<td>Future maintenance and other works to be aligned with the agreed Conservation Management Plan</td>
</tr>
<tr>
<td>CON-5</td>
<td>Continue to undo previous inappropriate repairs or alterations as appropriate</td>
</tr>
<tr>
<td>CON-6</td>
<td>Manage anti-social side effects of public access (legal and otherwise), such as graffiti and litter, metal theft etc.</td>
</tr>
<tr>
<td>CON-9</td>
<td>Maintain existing site emergency arrangements between operators, the local authorities, the emergency services and the Scottish Government, and review as levels of public access evolve</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
</tr>
<tr>
<td>PRES-1</td>
<td>To develop a site-wide Audience Development Plan, assessing how the property can be better presented, and the need to manage and improve infrastructure to reap the benefits of increased visitor numbers whilst minimising the negative impact on local communities</td>
</tr>
<tr>
<td>PRES-2</td>
<td>Consider the possibility of developing visitor access onto the property</td>
</tr>
<tr>
<td>PRES-3</td>
<td>Develop a consistent site-wide signage and interpretation strategy</td>
</tr>
<tr>
<td>PRES-4</td>
<td>Develop off-site marketing and pre-visit information through existing and potential new routes, through Tourist Information Centres, websites and social media</td>
</tr>
<tr>
<td>Action</td>
<td>Timescale/Group</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
</tr>
<tr>
<td>PRES-6 Conduct a laser-scan survey of the property and create a 3D model for a wide range of uses including education, virtual tourism, and asset management</td>
<td>Year 1+ (pilot survey completed) Historic Scotland</td>
</tr>
<tr>
<td>PRES-8 Introduce a programme of vegetation management around key public viewpoints</td>
<td>Years 1-6 Fife and City of Edinburgh Councils</td>
</tr>
<tr>
<td>PRES-9 Further integrate views of the property into national bicycle networks and local footpaths and trails</td>
<td>Years 1-2 Steering Group</td>
</tr>
<tr>
<td>PRES-10 Co-ordinate presentation of the property with promotional activities and events supporting the Forth Road Bridge and the Queensferry Crossing</td>
<td>Years 1-6 Steering Group</td>
</tr>
<tr>
<td>Community Benefit</td>
<td></td>
</tr>
<tr>
<td>CB-1 in anticipation of further increases in visitors, initiate an infrastructure review, to include roads and parking, in both Queensferry and North Queensferry, as well as in adjacent areas where more capacity might be available</td>
<td>Year 1+ Transport Scotland, Fife and City of Edinburgh Councils</td>
</tr>
<tr>
<td>CB-2 Carry out a review of public transport (co-ordinated with PRES-3) serving the communities at both ends of the property, to include ways in which it can be better integrated and improved to help accommodate an anticipated increase in visitors</td>
<td>Year 1+ Transport Scotland, Fife and City of Edinburgh Councils</td>
</tr>
<tr>
<td>Transmission to Future Generations</td>
<td></td>
</tr>
<tr>
<td>TRA-1 Bring together community groups around the property (on both sides of the Forth) and develop an integrated programme of activities and events</td>
<td>Years 1-6 Steering Group</td>
</tr>
<tr>
<td>TRA-2 Widen existing educational activity relating to the property in support of local schools and colleges</td>
<td>Years 1-6 Steering Group</td>
</tr>
<tr>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>MAN-1 Following the submission of the nomination dossier, maintenance of the Forth Bridge World Heritage Steering Group at least until the decision by the World Heritage Committee in 2015</td>
<td>Year 1+ Steering Group</td>
</tr>
<tr>
<td>MAN-2 The Steering Group to seek out sources of external funding to help further the aims of the Management Plan</td>
<td>Years 1-6 Steering Group</td>
</tr>
<tr>
<td>MAN-3 The Steering Group to monitor the impact of the Nomination and potential inscription on local communities around the property</td>
<td>Years 1-6 Steering Group</td>
</tr>
<tr>
<td>MAN-4 The Steering Group to continue to manage the dedicated website at www.forthbridgeworldheritage.com</td>
<td>Years 1-6 Historic Scotland</td>
</tr>
<tr>
<td>MAN-5 The Steering Group to ensure that the property (and this Management Plan, including later revisions) is properly included in any future Development Plans, planning policies, revisions etc. in both Fife and City of Edinburgh</td>
<td>Years 1-6 Fife, City of Edinburgh and West Lothian Councils</td>
</tr>
<tr>
<td>MAN-6 The Steering Group to seek sources of funding (internal and external) to fund a full 3D digital survey and the creation of a 3D digital model of the property (PRES-6)</td>
<td>Year 1 Historic Scotland</td>
</tr>
<tr>
<td>MAN-7 The Steering Group to seek funding to support the development of visitor facilities that provide access to the property</td>
<td>Year 1 Network Rail</td>
</tr>
<tr>
<td>MAN-8 The Steering Group to seek to ensure that existing levels of resources provided for the conservation and operation of the property are, at the very least, maintained in the coming years</td>
<td>Years 1-6 Network Rail and Transport Scotland</td>
</tr>
<tr>
<td>MAN-10 Through business communities, actively explore means by which the property can act as a positive socio-economic driver in the local communities</td>
<td>Years 1-6 Steering Group</td>
</tr>
</tbody>
</table>
Eleven key organisations within the Forth Bridge World Heritage Nomination Steering Group gave constant support towards this nomination. They are, in alphabetical order:

- Members of the Steering Group
 - City of Edinburgh Council
 - Fife Council
 - Forth Estuary Transport Authority (FETA)
 - Historic Scotland
 - Network Rail
 - North Queensferry Community Council
 - North Queensferry Heritage Trust
 - Queensferry Ambition
 - Queensferry & District Community Council
 - Scottish Government Historic Environment Policy Unit
 - Transport Scotland
 - Visit Scotland

In addition, thanks are due to a number of people and organisations without whom the development of this nomination dossier and management plan would have been impossible. These include:

- The Editorial Team
 - Alastair Fyfe
 - Ian Heigh
 - Mari McKee
 - Miles Oglethorpe
 - Mark Watson

- Members of the Forth Bridges Forum World Heritage Nomination Steering Group
 - Craig Boxman (Network Rail)
 - Diane Brown (Queensferry Ambition)
 - Andrew Burke (HEPU, Scottish Government)
 - Raymond Convill (Transport Scotland)
 - Campbell Docherty (Brickwork Communications Ltd)
 - Mary Finlayson (North Queensferry Community Council)
 - Carron Flockhart (Transport Scotland)
 - Alastair Fyfe (Chair, Transport Scotland)
 - Will Garrett (City of Edinburgh Council)
 - Keith Giblett (Queensferry & District Community Council)
 - Ian Heigh (Network Rail)
 - Lynn Hoey (Fife Council)
 - Rachel Haworth (City of Edinburgh Council)
 - Stacey Ingram (Transport Scotland)
 - James Lawson (North Queensferry Heritage Trust)
 - Mark Lawson (Historic Scotland, and Scotland Office)
 - Iain Mitchell (North Queensferry Community Council)
 - Gordon Morrison (Visit Scotland)
 - Miles Ogilvothero (Historic Scotland)
 - Richard Pirn (Visit Scotland)
 - Douglas Spears (Fife Council)
 - David Thomson (Transport Scotland)
 - Chris Waite (FETA)
 - Mark Watson (Historic Scotland)

In addition to those mentioned above, many other people and organisations have contributed to the preparation of the nomination, a selection of whom are listed below, some individually, and some by institution.

- The Big Partnership
 - Allan Buchan

- The Briggsers
 - Frank Hay
 - Jenni Meldrum
 - Len Saunders
 - James Walker
 - Elspeth Wills
 - Gordon Muir

- City of Edinburgh Council
 - Euan McMeeken
 - Duncan Robertson
 - Jenny Bruce
 - Alison Morris
 - Audrey Primrose
 - Gilly Johnston
 - Saty Kaur
 - Staff of Queensferry High School

- English Heritage
 - Keith Falconer
 - Christopher Young

- Fife Council
 - Alastair Hamilton
 - Iain Mitchell (North Queensferry Community Council)

- Glasgow School of Art, Digital Design Studio
 - Alastair Rawlinson

- Historic Scotland
 - Vanesa Gonzales
 - Laura Hindmarsh
 - Dorothy Hoskins
 - Jennifer Johnston Watt
 - Elizabeth McCrone
 - Lesley Macinnes
 - Chris McGregor
 - Alasdair McKenzie
 - John MacNeil
 - Michal Michalski
 - David Mitchell
 - Lisa Nicholson

- National Records of Scotland
 - Duncan Peel
 - Laura Shaw
 - James Steel
 - Ian A G Thomson
 - Lyn Wilson
 - Alice Wylie

- ICOMOS UK
 - Peter Marsden

- Institution of Civil Engineers
 - Mike Chrimes
 - Carol Morgan
 - Robert McWilliam
 - Gordon Masterton
 - Roland Paxton

- National Records of Scotland
 - David Brown
 - Linda Ramsay

- Network Rail
 - Sandra Herbenton
 - David Simpson
 - Duncan Sooman

- Rebanks Consulting Ltd
 - James Rebanks
 - Mike Clarke

- The Royal Commission on the Ancient and Historical Monuments of Scotland
 - John R Hume
 - Miriam McDonald

- Scottish Government, Historic Environment Policy Unit
 - Andrew Burke
 - David Fleetwood
 - Andrew Fleming
 - Luke Wormald

- Stand
 - Emma Chassels
 - Claudine Cockburn

- UK Government, Department of Culture, Media & Sport
 - Francesca Conlon

- Transport Scotland
 - Graham Porteous

- West Lothian Council
 - Sarah Collings

- Other Contributing Institutions
 - Institution of Civil Engineers
 - National Libraries of Scotland
 - National Museums of Scotland
 - National Records of Scotland
 - Royal Commission on the Ancient and Historical Monuments of Scotland
 - Science Museum

- Other Contributors
 - A & G Barr plc
 - Rianne Benninck
 - Lin Collis
 - Wouter van Neil
 - Ana Pereira Rodgers
 - Peter Stubbins
 - D C Thomson
 - Jamie Troughton
 - Loes Veldpaus

- Mapping is produced from Ordnance Survey material with permission of Ordnance Survey on behalf of the Controller of Her Majesty’s Stationery Office © Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution or civil proceedings.

- Copyright for the illustrations and images remains with the owners. All rights reserved.

- It is likely, given the scale of the work involved with this nomination, that we will have accidentally omitted significant names from these acknowledgements. We therefore apologise if we have missed naming you as a contributor.
Bibliography

Scottish and UK Government Legislation
• Ancient Monuments and Archaeological Areas Act 1979
• Transport Acts 1947, 1962 and 2001
• Forth Bridge Railway Act 1873
• Planning (Listed Buildings and Conservation Areas) (Scotland) Act 1997
• Planning (Scotland) Act 2006
• Historic Environment (Amendment) (Scotland) Act 2011
• Nature Conservation (Scotland) Act 2004

Scottish Government Policy and Guidance Planning Policy Guidance / Statements
• Planning Advice Note (PAN) 2 / 2011 Planning and Archaeology
• Planning and the Historic Environment and Planning Advice Note (PAN) 71 Conservation Area Management.
• Scottish Planning Policy (SPP) Available at: www.scotland.gov.uk/planning
• The Scottish Historic Environment Policy (SHEP), 2011. Historic Scotland
• PAN 75 Planning for Transport
• Development Planning and Management Transport Appraisal Guidance (DPMTAG)

Local Authority Policy and Publications
City of Edinburgh Council
• Guidance for Listed Buildings and Conservation Areas
• Edinburgh Built Heritage Strategy
• The Rural West Edinburgh Local Plan (RWE LPL) 2006
• Edinburgh Local Development Plan
Fife Council
• Dunfermline & West Fife Local Plan. November 2012
• Action Programme. April 2013
• Onshore Wind Energy Strategy for Fife 2012
West Lothian Council
• Strategic Development Plan. 2013
• West Lothian Local Development Plan Scheme No.5A. 2013

Conservation Area Appraisals

Other
• Scottish Natural Heritage, Firth of Forth Site of Special Scientific Interest: Site Management Statement
• Network Rail: Full strategic business plan for Scotland
• Network Rail. Route Plans: Scotland
• UNESCO. Managing Cultural World Heritage (accessed November 2013)
• UNESCO. Preparing World Heritage Nominations (2011, accessed 2013)

This Management Plan has been compiled in support of the nomination of the Forth Bridge for World Heritage listing by the Forth Bridge World Heritage Steering Group on behalf of the Forth Bridges Forum. It represents commitment to action in support of an agreed vision by the key partners supporting the nomination, and covers the period 2014-2019. The Steering Group comprises representatives from City of Edinburgh Council, Fife Council, the Forth Estuary Transport Authority, Historic Scotland, Network Rail, North Queensferry Community Council, North Queensferry Heritage Trust, Queensferry Ambition, Queensferry & District Community Council, Scottish Government Historic Environment Policy Unit, Transport Scotland and Visit Scotland.

Inevitably, this and other World Heritage Site Management Plans are dynamic in nature, requiring regular amendment as actions are completed and new situations and opportunities arise. This Plan, produced specifically in support of the World Heritage Site nomination, will require early and constant review and revision. Even if the bridge were not to be inscribed, many of the outputs (deliverable results) and broader outcomes contained in the management plan will still be achieved thanks to the impetus given by the nomination to UNESCO.
Dear Regina,

The Forth Bridge (United Kingdom) -- Additional information

Thank you for your letter of 17th September 2014, and for the opportunity that it provides us to supply you with supplementary information in support of our Forth Bridge World Heritage nomination.

Our response takes the form of this letter in which we provide summary answers to your thirteen questions. For some of the questions, our answers also refer to more information which we have provided in supporting Annexes A and B.

We will, in addition, be delighted to provide further information and clarification to assist your evaluation process if you require it.

Boundary of the nominated property

1. Insofar as the attributes or features that are part of the case for potential Outstanding Universal Value should be included within the boundary of the nominated property, could the State Party clarify its statement that the proposed Outstanding Universal Value of the bridge includes its setting (p. 77)?

Thank you for raising this issue. The paragraph cited in the Nomination Document relates to planning rather than statements of OUV, so we wish to emphasise that OUV does not in fact include the setting of the property.

However, Scottish Planning Policy does state that ‘where a development proposal has the potential to affect a World Heritage Site, or its setting, the planning authority must protect and preserve its Outstanding Universal Value.’ This means, as stated on page 78, that the setting of a World Heritage Site is a material consideration in the planning
process, but does not mean that the setting itself has OUV. The status of setting as a material consideration is a requirement of national policy generally, covering all of Scotland’s World Heritage Sites, and aligns with statutory designations (i.e. listed buildings). Guidance on Managing Change in the historic environment in Scotland is available online at http://www.historic-scotland.gov.uk/managingchange.

Buffer zone of the nominated property

2. Has the State Party considered the advantages and disadvantages of deeming the Queensferry Conservation Area and the North Queensferry Conservation Area to be de facto buffer zones for the nominated property?

Yes. It is clear that the two Conservation Areas alone cannot alone encompass the immediate setting of the Bridge, and that treating them as a buffer zone would be counter-productive because it could then be assumed that the property has no other visual setting.

It is for this reason that we are proposing an alternative ‘Bridgehead Zone’ which comprises not only the Conservation Areas, but also includes elements of adjacent designed landscapes, Green Belt, and scheduled monuments. It also embraces the adjoining parts of natural designated sites, including Sites of Special Scientific Interest (SSSIs), Special Protection Areas and Wetland (RAMSAR) coastal areas. Together, we believe these different forms or protection collectively provide sufficient protection for the immediate setting of the property, and can be considered to be a de-facto buffer zone.

Maps illustrating the extent of the de-facto buffer zone, including details of the designated areas and places this encompasses have been included in Annex A.

During the recent Technical Evaluation Mission, questions were raised about the marine environment that alerted us to the fact that we should include detailed information on the management and regulation of the river estuary over which the property is situated. With this in mind, we have included information on the marine management regime in Annex A. A new action in the revised Management Plan (in 2015) will be to invite a marine representative to join the Steering Group.

3. The draft Property Management Plan on p. 44 states that a buffer zone is not provided, “but this position can be reviewed during the Plan period if circumstances suggest a change.” Could the State Party clarify what circumstances would suggest a change in its position that a buffer zone is not required?

As stated in the answer to Question 2 above, the position is that existing cultural and natural designations combine to form a de-facto buffer zone around the Bridgehead which we believe is a more comprehensive and effective means of protecting the immediate setting of the property. We will, however, constantly review the situation during the period of this Management Plan, and if we believe that the various designations fail adequately to trigger the protection mechanisms within the planning
process, we will reassess this approach. In the meantime, we will include a new action in the revised Management Plan requiring the production of an enhanced map which demonstrates more effectively the combined coverage of the natural and cultural designations.

Setting of the nominated property

4. Could the State Party please clarify whether the setting described in Sections 5.c.8 and 5.c.9 of the nomination dossier has been formally or officially delineated or otherwise defined? If it has, would it be possible for the State Party to provide this documentation?

No. The immense scale of the property, and its visibility across the region would result in arbitrary and unworkable boundaries, so more flexibility of interpretation by decision makers (the Local Authorities) is essential. However they are willing to adopt the viewshed method into their planning systems, as is done for the Old and New Towns of Edinburgh World Heritage Site in its Action Plan (Action 9, see first link below) and based on their sky line study (second link below). Indeed, City of Edinburgh Council is already considering this approach in the Queensferry Conservation Area Appraisal.

http://www.edinburgh.gov.uk/info/20065/conversation/248/world_heritage_in_edinburgh
http://www.edinburgh.gov.uk/info/20065/conversation/249/the_skyline_study

We are therefore in the process of identifying between five and ten 'Key Views' of the property with the purpose of protecting its wider setting. Annex B contains summary information including nine proposed views, building on the analysis included in the property's Nomination Dossier. Through the introduction of a new action within the Management Plan, we intend to complete a fuller analysis of these Key Views, and once they have been agreed, ensure that they are embedded within the planning system in both local authorities

5. How is the setting of a Category ‘A’ listed building legally determined for the purposes of Schedule 5 of the Town and Country Planning (Development Management Procedure) (Scotland) Regulations 2013? Has the setting of the Forth Bridge been so determined?

Schedule 5 simply states that Scottish Ministers must be consulted on developments which may affect a Category A listed building or its setting. The decision if a proposed development will affect the setting of a listed building is made by the local planning authority and will depend on a number of factors, including the nature of the development itself and its location in relation to the property. The contents of the Management Plan will help inform these decisions and will be a material consideration in reaching a view on a development application.

Historic Scotland has produced operational guidance to support assessment of proposals for change where the historic environment is likely to be impacted. This is reviewed and updated on a regular basis; indeed, the guidance has been reviewed and is currently
being consulted on. This ensures current understanding around setting is built into practice on the ground. See http://www.historic-scotland.gov.uk/setting-2.pdf

Proposed Statement of Outstanding Universal Value

6. Proposed Statement of Outstanding Universal Value. Could the State Party provide a sample or indication of the built structures that give evidence of “the great influence” the Forth Bridge exerted on civil engineering practice, and of the profound “influence its construction had on mankind in ways not limited to bridge-building”?

Yes. More generally, the civil engineering practices brought to the Forth Bridge by Arrol were further developed by his company, and widely emulated across the UK and beyond. Sir William Arrol & Company went on to re-build the Tay Bridge and construct many medium sized bridges (such as Tower Bridge in London) as well as other engineering factories and workshops, cranes, and power stations using systems devised and further developed at the Forth Bridge (as recorded in the company’s lavish catalogue of 1909). Sir William Arrol had brought with him and adapted construction processes, including modular pre-fabrication and re-assembly, that emanated from the boilermakers and shipbuilders of the River Clyde, which at the time was emerging as one of the great industrial centres of the world. Many of these processes are still deployed today in bridge building, and were well documented in contemporary journals. A key factor behind the success of these processes was the development of mild steel, of which more is said below in answer to Question 7.

Beyond engineering itself, it is also clear that the Forth Bridge’s more general impact was highly significant. This can be gauged from the official Visitor’s Book for the Forth Bridge Works over the duration of the construction, which records eminent visitors from all over the world. This is currently in the care of the National Records of Scotland (but still owned by a descendant of John Fowler, Jamie Troughton), and will shortly be digitized. Research is planned that will use the Book and signatures to identify some of the famous visitors who feature in the extensive photographic archives created during the construction of the Bridge. Several, such as Henry Bessemer, Gustav Eiffel and prime minister William Gladstone, are known, but there may be many others who have yet to be identified.

Another measure of the influence of the Forth Bridge is the range and number of publications that were devoted to it before, during and after its construction. Examples include Archibald Williams’s classic, Engineering Wonders of the World in 1909 (Volume 1 on pp. 321-337). In the USA, the Forth Bridge featured regularly in the Scientific American over several years, and books and papers were published in many other countries such as France and Germany (including Barkhausen’s Die Forth-Brücke of 1889). A selection of digital copies of these articles has been deposited on Dropbox (https://www.dropbox.com/sh/lisocu2rjhv34dh/AABe6XwA-0o7Xa2LbxeSGaj8a?dl=0) to give an indication of the impact of the property within the engineering profession, and some are referred to specifically in the answers below.
Undoubtedly, the Quebec Bridge, and one planned but not built in San Francisco, held the Forth Bridge as the exemplar, or one to try to beat. However, no other bridge actually built came close to it, and it was not until suspension bridges made further advances that the spans at the Forth and Quebec were exceeded, by George Washington and Golden Gate Bridges in the USA. In that sense, therefore, it was not the first of many, but a lone outstanding object scarcely ever imitated, but widely admired as an engineering wonder of the world.

7. Reference is made to the application of “novel technologies.” Could the State Party confirm that these novel technologies relate to creating a great span and to capitalizing on the properties of a relatively new material, mild steel? Are there any other novel technologies?

Yes. The Forth Bridge turned out to be a prominent milestone which proved mild steel to be a consistently inexpensive and reliable construction material which is still widely used in the 21st century.

The novel technologies that were developed to exploit it included bespoke cranes designed by Arrol for use on the Bridge itself, but most particularly, portable hydraulic riveting machines. These were developed by Arrol himself, and a sense of their significance (and portability) can be gauged from an article in the journal Engineering in 1879 (pp. 32-33) covering a patent infringement case relating to Arrol’s riveters. On the property itself, perhaps most visually distinctive was the use of circular cages to house riveters and riveting machines that travelled up and down the main tubular members of the bridge during construction. These can be seen in illustrations carried in many contemporary journals, not least the article by Wilhelm Westhofen in Engineering in 1890 in which he describes the construction of the Forth Bridge in great detail. Other examples of innovation include the construction of the caissons (Belgian technology) from which the foundation piers of the bridge were created.

Perhaps the greatest breakthrough for engineering more generally was the use of mild steel on a large scale for the first time. The extent to which this is an innovation is articulated well by Professor Alex B W Kennedy, whose lecture (reported in Engineering in 1880, p. 141) who expresses excitement at the prospect of mild steel being used on the forthcoming Forth Bridge for the first time on any large-scale engineering project. Having also explained why Bessemer steel had so many quality inconsistencies, he also expressed the hope that the success of mild steel would bring to an end the process of puddling to produce wrought iron.

8. Could the State Party briefly elaborate on the “new design principles and new construction methods” mentioned in Criterion (ii)?

As mentioned in the answers to Questions 6 and 7 above, the new design principles and construction methods relate in particular to the wind-resistant, much more rigid cantilever design (see Question 9 below), the deployment of evolving hydraulically-powered machine tools, and the use on an immense scale of a brand new material - mild steel - produced in open-hearth furnaces using the Siemens Martin Process (mostly derived
from the Glasgow area). The comparative low cost of mild steel, combined with its consistent quality and performance (compared with Bessemer steel), and the high cost and limited availability of wrought iron, liberated the designers of the Bridge, who were able to build a much larger and more robust structure within a realistic budget and in good time. Thus, the era of large-scale mild steel construction was born.

Balanced cantilevers were later used by William Arrol and other companies to build different types of structure, ranging from iconic Giant Cantilever Cranes to transporter bridges. An example of range of engineering structures that Arrol went on to produce both within and outside the UK is illustrated in the advertisement (dating from 1928) included in Annex A.

9. Could the State Party clarify what, precisely, were the innovations in design and concept mentioned in Criterion (iv)?

This refers principally to the design concept taken forward by Benjamin Baker and John Fowler to realise their ambition to use cantilevers to achieve huge spans, a subject about which Baker wrote and lectured long before his dream was realised in the creation of the Forth Bridge.

At a technical level, in the aftermath of the Tay Bridge Disaster in 1879, the achievement of constructing such huge spans with greatly enhanced rigidity and wind resistance cannot be underestimated. The engineering profession needed a powerful and successful project to re-establish public confidence, and the Forth Bridge was just that. Nothing like it had been seen before, and as was observed in 1909 by Archibald Williams, it was widely regarded as an 'Engineering Wonder of the World' (see volume 1, pp. 321-337 in his publication of the same name).

This is reflected in the broad range of publications and memorabilia that continue to appear even in the 21st Century, and the large number of businesses and institutions that have adopted the Bridge within their logos. Of these, one of the most prominent is Fife Council, the local authority on the north side of the property. The Forth Bridge has also frequently appeared on paper money, the most recent being the Bank of Scotland £20 note, which also features the Japanese engineer Kaichi Watanabe, who worked on the construction of the Bridge after studying at Glasgow University. In 2015, the Clydesdale Bank will issue a commemorative £5 note celebrating the contribution of Sir William Arrol.

Conservation

10. Would it be possible for the State Party to provide a brief summary of the more significant interventions to the nominated property over the past 125 years?

Yes. Listed Building Consent cases that are listed in p.89 of the Nomination Document (see below), and before that, there were a number of minor alterations. These include:
1913 - A strengthened trough in which the rails sit on the deck of the Bridge.
1998 - 2012 new paint system applied to bare metal from within sealed enclosures.
A summary chronology of Listed Building Consents for the bridge:
1987 - Dry grit blasting of the portals, conditional on making good the pointing
1988 - New compound for rescue boat
1989 - Stone cleaning, picnic /viewing area /environmental improvement at North Queensferry
1990 - British Rail Property Board seeks consent for floodlighting, granted on advice from Historic Scotland who suggested welding or resin gluing instead of drilling through the original struts in case they prove temporary
1990 - Consent is granted for floodlighting (100 year celebrations)
1994 - Anti-trespass fence at the north end/pier
1998 - Internally-illuminated digital Millennium countdown clock given temporary consent
1999 - Different floodlighting scheme designed by Ross di Alessi. Previous lights were steadily removed as part of the repainting
2012 - A walkway to wrap around Jubilee Tower portal

Network Rail estimate that the Bridge retains 99.5% of the steel from which it was originally built.

Most significant of the interventions listed above has been the recent re-painting project from 1998-2012. Previously, the steelwork of the property had been painted on a continuous basis, which resulted in the widespread use of the term 'like painting the Forth Bridge' to describe an endless task. The new paint system, which required an investment of over £140 million, should put an end to this 'endless' process. Apart from representing a major investment, it is also a vote of confidence in the future of the Bridge.

Ownership

11. Could the State Party confirm that the nominated property’s owner, Network Rail Limited, has been reclassified as a public sector arm’s-length body of the Department for Transport?

Yes. Network Rail is a UK central government body, regulated by the Office of Rail Regulation (ORR) and is accountable to both the Scottish Parliament and the UK Parliament. It owns, operates and maintains the British rail infrastructure, including 2,776 km of Scotland’s railways, 350 Scottish stations and the Forth Bridge.

As a consequence of devolution in the UK, rail investment in Scotland is specified by the Scottish Government through the ORR’s periodic review cycle, which establishes the revenues and outputs for Network Rail in sequential five year periods.
Management

12. Would it be possible for the State Party to provide an organizational chart showing the interrelationships of the Forth Bridges Forum, Forth Bridge World Heritage [Nomination] Steering Group, and Forth Bridge Partnership Management Agreement Group? If there is a significant difference in the interrelationships pre- and post-inscription, could this also be indicated?

Yes. See the diagram below. There will be some changes if inscription is successfully gained, but it is important to note that the nomination process has itself initiated positive processes (see Question 13 below) which will now continue whether or not World Heritage listing is achieved.

The most obvious organisational difference will relate to the Forth Bridge Partnership Management Agreement Group, which currently has deliberately not yet included language associated with World Heritage in its operational business. In the event of inscription, the language will change, although the Bridge already has the highest level of statutory protection in Scotland, which itself is embodied within the Partnership Management Agreement. This would continue to be reflected in the Management Agreement, which is reviewed and refreshed annually.

![Organizational Diagram](image)

13. What is the current status of the draft Property Management Plan for the nominated property? Has its six-year action plan, which is scheduled to begin in 2014, begun?

Yes. The six-year Action Plan is live, with significant progress being made, and a Management Plan tracker in place which routinely monitors activity. The Steering Group now meets once every two months, and progress is measured via the tracker, an extract of which containing those actions relating to the first year of the Management Plan is included in Annex A.

A major concern both of the Steering Group and the community more generally is the need to plan for an anticipated increase in visitors to the region around the nominated property. For this reason, members of the Forth Bridges Forum are already reviewing local transport infrastructure and are collecting traffic data. At the same time, work on a
Tourism Strategy for the Forth Bridges has also commenced, which has included several meetings with local communities on both sides of the Forth, more of which are planned.

We are conscious that, although we have successfully organised some events with local schools, there is huge potential for more extensive and ambitious engagement with different tiers of education across Scotland. We are therefore planning to make better use of the extraordinary historical archive resources held both by the National Records of Scotland in Edinburgh, and by Network Rail’s corporate archive in York.

Thank you once again for opening this dialogue with us. We hope very much that the additional information we have provided answers your questions. If, however, you require further information or clarification, please do not hesitate to let us know.

Yours sincerely,

Leila Al-Kazwini
Head of Heritage, DCMS
FORTH BRIDGE WORLD HERITAGE NOMINATION

Annex containing supplementary information for ICOMOS

Included below is a list of historic publications that provide more information on the property in a variety of forms. They are pdf documents, and have been stored in a shared folder on Dropbox (https://www.dropbox.com/sh/lisocu2rihyv34dh/AABe5XwA-0o7Xa2LbxeSGaj8a?dl=0). We can supply this material on disk or a usb memory stick if access to Dropbox proves to be problematic. This is merely a selection – there is a lot more information available, but mostly not in digital form.

This material comprises:

- several issues of Engineering, including Westhofen’s detailed description of the construction of the Bridge, pieces on the history of mild steel, and on hydraulic machinery, including riveters.
- A sequence of seven issues of Scientific American reporting on progress and completion of the Bridge
- Some Sir William Arrol & Co stationery, an advertisement, and its seminal (and very large) company brochure of 1909
- The first volume of Engineering Wonders of the World, also dated 1909
- A catalogue of record material from Sir William Arrol & Co, held by the National Monuments Record of Scotland in Edinburgh
- A June 1913 issue of Bulletin Mensuel de L’Association des Anciens Elèves de l’Ecole Centrale Lyonnaise

An illustration used in Engineering Wonders of the World (1909) to demonstrate the immense scale of the Forth Bridge, as superimposed on the centre of London
Question 2. Has the State Party considered the advantages and disadvantages of deeming the Queensferry Conservation Area and the North Queensferry Conservation Area to be de facto buffer zones for the nominated property?

Mapping the ‘Bridgehead Zone’

The two maps below show the cultural designated sites and areas, and the natural designated areas. The first map also shows (in pink) the area of the ‘Bridgehead Zone’, which draws together the various designations (both cultural and natural) to create a de-facto buffer zone which uses the various forms of statutory designation that are already in place to protect the immediate setting of the property through the planning system.

Our intention is to create a hybrid version of the this and the map below, incorporating all the statutory designations to demonstrate the cohesion of the Bridgehead Zone. This will be a new action in the next iteration of the Management Plan (in 2015).
Map of natural designated areas close to the Forth Bridge.
Summary of Maritime/Marine Governance and Regulation

Given that Local Authority responsibility and planning powers stop at mean low water mark, some clarification is required in relation to responsibility for maritime protection covering the water around and under the property. Although Network Rail own the footings on which the property rests, the Crown Estate owns the seabed and water body around the Bridge, and is responsible for managing it sustainably. Any revenue earned is paid to the UK Government. The key contact in relation to the Forth Bridge is the Coastal Development Manager, currently Paul Bancks (Paul.Bancks@thecrownestate.co.uk).

Regulation of the shipping on the Forth Estuary is carried out by the Forth and Tay Navigation Service (FTNS), and the Nomination Dossier does consider shipping as a possible hazard to the bridge, as is mentioned in the Management Plan. FTNS is part of Forth Ports, one of the biggest port operators in the UK. The principal contact is the Chief Harbour Master, currently Captain Bob Baker, whose contact details are, Grangemouth Port Office, Grangemouth FK3 8UE, +44 (0) 1324 668400, ftns@forthports.co.uk.

The Scottish Government Directorate, Marine Scotland, is responsible for overseeing the management of Scotland’s seas, and amongst its remit is the creation of ‘Marine Planning Partnerships’ (MPPs). It is likely that an MPP will be established in the future for the Forth, and if so, the Forth Bridge World Heritage Steering Group will engage accordingly, especially with a view to protecting the setting of the property. The contact at Marine Scotland is Anna Donald (anna.donald@scotland.gsi.gov.uk).

Co-ordination of the many groups and stakeholders with an interest in the management of the river is carried out by the Forth Estuary Forum, which is a grouping that promotes the exchange of information such as data that monitors the ecological condition of the Forth. This is mentioned in the nomination as a useful management grouping relating to natural heritage. There also is the Inner Forth Landscape Partnership which covers the estuary to the west of Blackness-Rosyth.

6. Proposed Statement of Outstanding Universal Value. Could the State Party provide a sample or indication of the built structures that give evidence of “the great influence” the Forth Bridge exerted on civil engineering practice, and of the profound “influence its construction had on mankind in ways not limited to bridge-building”?

One of the greatest influences of the Forth Bridge stems directly from the catastrophic failure of Sir Thomas Bouch’s Tay Bridge in 1879, which brought into disrepute the proposed first design of the Forth Bridge (also by Bouch). This was to be a suspension bridge, and the response was an enthusiasm for the much more rigid, wind-resistant cantilever designs, of which the Forth Bridge was an extraordinary example.

It is therefore unfortunate that, having criticised the Forth Bridge for being massively overdesigned, Theodore Cooper’s Quebec Bridge, also a great cantilever design, proved to be under-specified, and collapsed twice during construction with great loss of life. Bridge historians such as Henry Petroski tend to regard the second collapse of the Quebec Bridge in 1917 as the moment when large-scale cantilever bridges fell out of favour, and suspension bridges were rehabilitated. This is one explanation for why there are so few large cantilever bridges in the world.
This illustration by Charles J de Loey appeared in Engineering Wonders of the World in 1909. It is useful because it captures one of Arrol’s steam cranes working on top of the cantilever tower, and the riveting cages, at the time situated at the top of the two vertical tubular members.

As for influence on mankind in ways not limited to bridge-building, for many people the property highlights humanity’s ability to overcome obstacles. In that sense lunar exploration owes something to the Forth Bridge. For example a posting by Dr Ian Johnson of the Open University compares the Forth Bridge with Concorde: “What links these two very different iconic creations? I think they gained their status because both of them answered very basic needs of the human condition: to take us beyond ourselves and our world, to cross the

7. Reference is made to the application of “novel technologies.” Could the State Party confirm that these novel technologies relate to creating a great span and to capitalizing on the properties of a relatively new material, mild steel? Are there any other novel technologies?

This illustration shows the letterhead of stationery used by Sir William Arrol & Co in 1908, 18 years after the completion of the Forth Bridge.

The above illustration is a sample of typical stationery used by Sir William Arrol & Company. By 1908, Arrol’s business had expanded to take advantage of an explosion in demand for steel structures and associated machinery which its completion of the Forth Bridge had helped to generate. The letterhead is notable because it not only depicts three of the company’s most prominent contracts – the Forth Bridge, the Tay Bridge and Tower Bridge in London, but also refers to the hydraulic machinery that it continued to manufacture, not least, riveters.

8. Could the State Party briefly elaborate on the “new design principles and new construction methods” mentioned in Criterion (ii)?

The impact of the new construction methods, together with the quality, affordability and versatility of mild steel, is captured in Sir William Arrol’s own trade literature, an example of which is the advertisement below. Arrol also published a large hard-bound brochure in 1909 which recorded the company’s achievements to date.

In 1987, Sir William Arrol was closed by its parent company. Some of its archive was rescued by the Royal Commission on the Ancient and Historical Monuments of Scotland (RCAHMS), and is now housed in Edinburgh. A catalogue of material relating to this collection was published, and a pdf copy has been deposited in the Dropbox directory mentioned above, together with a copy of Arrol’s 1909 brochure. This also provides a good
overview of the range and scale of mild-steel construction projects that the company went on to complete.

An example of Arrol publicity dating from 1929, depicting examples of its larger projects. The iconic Giant Cantilever cranes were a potent symbol of Scottish engineering, and were built as far afield as Australia and Japan.
13. What is the current status of the draft Property Management Plan for the nominated property? Has its six-year action plan, which is scheduled to begin in 2014, begun?

Yes, the six-year action plan has been active since the submission of the Nomination in January 2014. The table below is an extract containing only those elements relating to the first year.

FORTH BRIDGE WORLD HERITAGE NOMINATION
Summary Management Plan Tracker, 26 September 2014

<table>
<thead>
<tr>
<th>Commitment Number</th>
<th>Identification</th>
<th>Owner</th>
<th>Timescale Years</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRO-1</td>
<td>Protection: Conduct a review of the designation of the property. Reconsider if necessary during the lifetime of the Plan.</td>
<td>HS</td>
<td>Completed 2013</td>
<td>Done</td>
</tr>
<tr>
<td>PRO-2</td>
<td>Protection: Ensure that conserving the property and its wider setting is properly integrated into Local Development Plans and Frameworks.</td>
<td>Fife, CEC, WLC</td>
<td>1 - 6</td>
<td>In Progress</td>
</tr>
<tr>
<td>PRO-3</td>
<td>Protection: Review the appraisals of the bridgehead Conservation Areas as required. This is more urgent on the south bank of the Forth where the Conservation Area Appraisal is 12 years old, and less so in Fife where it is only a year old.</td>
<td>CEC (Y2) Fife (Y5)</td>
<td>2, 5</td>
<td>In Progress</td>
</tr>
<tr>
<td>CON-1</td>
<td>Conservation: Draft and agree a Partnership Management Agreement (PMA) which defines and improves the processes through which consent is achieved for works on the property.</td>
<td>NR, HS, CEC, Fife</td>
<td>Completed 2014</td>
<td>Done Will be updated annually</td>
</tr>
<tr>
<td>CON-2</td>
<td>Conservation: To define and agree standards of maintenance through the Partnership Management Agreement Group, developing a formal Conservation Management Plan.</td>
<td>PMAG</td>
<td>1</td>
<td>In progress</td>
</tr>
<tr>
<td>CON-3</td>
<td>Conservation: To agree a system of monitoring of the property which feeds directly into the State of Conservation reporting process.</td>
<td>PMAG</td>
<td>1</td>
<td>In progress</td>
</tr>
<tr>
<td>Annex A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CON-4</td>
<td>Conservation: Future maintenance and other works to be aligned with the agreed Conservation Management Plan</td>
<td>PMAG</td>
<td>1 - 6</td>
<td>In progress</td>
</tr>
<tr>
<td>CON-5</td>
<td>Conservation: Continue to undo previous inappropriate repairs or alterations as appropriate.</td>
<td>NR</td>
<td>1 - 6</td>
<td>Standard procedure, managed through PMA</td>
</tr>
<tr>
<td>CON-6</td>
<td>Conservation: Manage anti-social side effects of public access (legal and otherwise), such as graffiti and litter, metal theft etc.</td>
<td>NR</td>
<td>1 - 6</td>
<td>Standard security procedure</td>
</tr>
<tr>
<td>PRES-1</td>
<td>Presentation: To develop a site-wide Audience Development Plan, assessing how the property can be better presented, and the need to manage and improve infrastructure to reap the benefits of increased visitor numbers whilst minimising the negative impact on local communities.</td>
<td>Steering Group</td>
<td>1+</td>
<td>Not commenced yet</td>
</tr>
<tr>
<td>PRES-2</td>
<td>Presentation: Consider the possibility of developing visitor access onto the property.</td>
<td>NR</td>
<td>1</td>
<td>Network Rail have begun the process</td>
</tr>
<tr>
<td>PRES-3</td>
<td>Presentation: Develop a consistent site-wide signage and interpretation strategy.</td>
<td>Steering Group</td>
<td>1 - 6</td>
<td>Process commenced, with Queensferry Ambition a prime mover</td>
</tr>
<tr>
<td>PRES-4</td>
<td>Presentation: Develop off-site marketing and pre-visit information through existing and potential new routes, through Tourist Information Centres, websites and social media.</td>
<td>VS with Steering Group</td>
<td>1 - 6</td>
<td>Tourism Strategy being developed by newly formed Tourism Group</td>
</tr>
<tr>
<td>PRES-6</td>
<td>Presentation: Conduct a laser-scan survey of the property and create a 3D model for a wide range of uses including education, virtual tourism, and asset management.</td>
<td>HS</td>
<td>1+ (pilot survey completed)</td>
<td>Pilot survey completed and funding secured for full survey in 2015</td>
</tr>
<tr>
<td>PRES-8</td>
<td>Presentation: Introduce a programme of vegetation management around key public viewpoints.</td>
<td>Fife, CEC</td>
<td>1 - 6</td>
<td>Not commenced yet</td>
</tr>
<tr>
<td>PRES-9</td>
<td>Presentation: Further integrate views of the property into national bicycle networks and local footpaths and trails, existing and those being developed such as the Ferryhill Heritage Trail.</td>
<td>Steering Group</td>
<td>1 - 5</td>
<td>Not commenced yet</td>
</tr>
<tr>
<td>Code</td>
<td>Activity</td>
<td>Steering Group</td>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>PRES-10</td>
<td>Presentation: Co-ordinate presentation of the property with promotional activities and events supporting the Forth Road Bridge and the Queensferry Crossing.</td>
<td>Steering Group</td>
<td>1 - 6</td>
<td></td>
</tr>
<tr>
<td>CB-1</td>
<td>Community Benefit: In anticipation of further increases in visitors, initiate an infrastructure review, to include roads and parking, in both Queensferry and North Queensferry, as well as in adjacent areas where more capacity might be available.</td>
<td>TS, Fife, CEC</td>
<td>1+</td>
<td></td>
</tr>
<tr>
<td>CB-2</td>
<td>Community Benefit: Carry out a review of public transport (co-ordinated with PRES-3) serving the communities at both ends of the property, to include ways in which it can be better integrated and improved to help accommodate an anticipated increase in visitors.</td>
<td>TS, Fife, CEC</td>
<td>1+</td>
<td></td>
</tr>
<tr>
<td>TRA-1</td>
<td>Transmission to Future Generations: Bring together community groups around the property (on both sides of the Forth) and develop an integrated programme of activities and events.</td>
<td>Steering Group</td>
<td>1 - 6</td>
<td></td>
</tr>
<tr>
<td>TRA-2</td>
<td>Transmission to Future Generations: Widen existing educational activity relating to the property in support of local schools and colleges.</td>
<td>Steering Group</td>
<td>1 - 6</td>
<td></td>
</tr>
<tr>
<td>MAN-1</td>
<td>Management: Following the submission of the nomination dossier, maintenance of the Forth Bridge World Heritage Steering Group at least until the decision by the World Heritage Committee in 2015.</td>
<td>Steering Group</td>
<td>1+</td>
<td></td>
</tr>
<tr>
<td>MAN-2</td>
<td>Management: The Steering Group to seek out sources of external funding to help further the aims of the Management Plan.</td>
<td>Steering Group</td>
<td>1 - 6</td>
<td></td>
</tr>
<tr>
<td>MAN-3</td>
<td>Management: The Steering Group to monitor the impact of the Nomination and potential inscription on local communities around the property.</td>
<td>Steering Group</td>
<td>1 - 6</td>
<td></td>
</tr>
<tr>
<td>MAN-4</td>
<td>Management: The Steering Group to continue to manage the dedicated website at www.forthbridgeworldheritage.com.</td>
<td>TS</td>
<td>1 - 6</td>
<td>Continuing</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MAN-6</td>
<td>Management: The Steering Group to ensure that the property (and this Management Plan, including later revisions) is properly included in any future Development Plans, planning policies, revisions etc. in both Fife and City of Edinburgh.</td>
<td>Fife, CEC, WLC</td>
<td>1 - 6</td>
<td>Continuing dialogue with local authorities</td>
</tr>
<tr>
<td>MAN-7</td>
<td>Management: The Steering Group to seek sources of funding (internal and external) to fund a full 3D digital survey (and the creation of a 3D digital model) of the property (PRES-6).</td>
<td>HS</td>
<td>1</td>
<td>Done</td>
</tr>
<tr>
<td>MAN-8</td>
<td>Management: The Steering Group to seek funding to support the development of visitor facilities that provide access to the property.</td>
<td>NR</td>
<td>1</td>
<td>No action – pending submission and approval of Network Rail proposals</td>
</tr>
<tr>
<td>MAN-9</td>
<td>Management: The Steering Group to seek to ensure that existing levels of resources provided for the conservation and operation of the property are, at the very least, maintained in the coming years.</td>
<td>NR, TS</td>
<td>1 - 6</td>
<td>Continuing</td>
</tr>
<tr>
<td>MAN-10</td>
<td>Management: Through business communities, actively explore means by which the property can act as a positive socio-economic driver in the local communities.</td>
<td>Steering Group</td>
<td>1 - 6</td>
<td>Not yet commenced</td>
</tr>
<tr>
<td>MAN-11</td>
<td>Management: Assess the need to have a World Heritage Site co-ordinator dedicated to the site.</td>
<td>Steering Group</td>
<td>2</td>
<td>In progress – under discussion</td>
</tr>
</tbody>
</table>
Scoping Document: selected key views from middle distance locations inland of the Forth Bridge

Consultation with stakeholders, and the local authorities concerned, resulted in a sifting of the 78 viewpoints enumerated in the Nomination Dossier to create a more limited set of nine proposed key viewpoints where it would be beneficial to establish viewcones. This, and the impact upon the setting of the Forth Bridge, can be a material consideration in the determination of planning applications.

They are not exclusively what constitutes the setting of the Forth Bridge, as there are many more locations from which the bridge may be seen close to and far away. It was not felt necessary to select viewpoints in which the foreground is the sea or the shoreline, which is in any case protected against development.

Map 1: the position of the nine proposed viewcones (Crown Copyright: Ordnance Survey)
1. Ferryhills, North Queensferry, Fife- Inventory Battlefield, Local Landscape Area and Site of Special Scientific Interest. (2014)

2. B916 Fife, Fordell to Hillend near M90, (2013)

4. Mons Hill, Dalmeny Estate, Edinburgh. Inventory Designed Landscape and Special Landscape Area (2013)

7. From Forth Bridges Contact and Education Centre and FETA viewing platform, Queensferry, City of Edinburgh (2013)

H. E. Mr Matthew Sudders
Ambassador, Permanent Delegate
Permanent Delegation of the United
Kingdom of Great Britain and Northern
Ireland to UNESCO
Maison de l’UNESCO
Bureau M3.06
1, rue Miollis
75732 PARIS Cedex 15

Our Ref. GB/MA 1485
Charenton-le-Pont, 17 December 2014

World Heritage List 2015
The Forth Bridge (United Kingdom)
- Additional information II

Dear Sir,

ICOMOS is currently assessing the nomination of The Forth Bridge as a World Heritage property. We thank you for the additional information you provided on 4 October 2014 and 24 October 2014.

As part of our evaluation process, the ICOMOS World Heritage Panel has now reviewed this nomination, including the additional information received, and has identified areas where it considers further information is needed.

Buffer Zone
ICOMOS understands the contention that the nominated property’s surroundings are protected by means of the local planning system and existing heritage designations. We welcome the proposal to consider the suite of existing cultural and natural heritage designations that are described and mapped in a document submitted in October 2014 entitled “Forth Bridge Bridgehead Zone” as forming the basis of a de facto buffer zone for the nominated property. For the purposes of effective protection of the nominated property, as outlined in paragraphs 103 and 104 of the Operational Guidelines, the relevant marine (water) area of the estuary should also be included. This suite of designations along with the relevant marine (water) area now need to be officially confirmed and submitted by the State Party as constituting the de facto buffer zone.

We believe that a consolidated map and description of the suite of cultural and natural heritage designations and the chosen marine area that collectively comprise this “Bridgehead Zone” should be created and disseminated for the benefit of stakeholders, regulatory and planning officials, and interested parties.

A limited number of key viewsheds and views of the bridge also need to be selected, mapped, and included in the appropriate planning instruments and Property Management Plan, with the objective of ensuring their protection.

Management System
ICOMOS considers that the authority or authorities responsible for the relevant marine (water) area of the estuary need to be included in the management system for the property, and should be involved in the identification of the key viewsheds mentioned above.

The institutionalization of the current Steering Group needs to be clarified, and the presence of the Forth Bridge Partnership Management Agreement Group as a technical body for managing and monitoring the property needs to be confirmed.
We believe that a clearer presumption against the construction of wind turbines within the key viewsheds of the bridge needs to be made in the appropriate planning instruments and the Property Management Plan.

Interpretation and Tourism Plan

An interpretation and tourism plan that fully respects the proposed Outstanding Universal Value of the nominated property needs to be developed in full consultation with local residents. This plan should be included as part of the Property Management Plan, or as an adjunct to it.

Could a timetable please be provided that indicates when each of these recommended improvements will be undertaken and when each is expected to be completed.

We look forward to your responses to these points, which will be of great help in our evaluation process.

We would be grateful if you could provide ICOMOS and the World Heritage Centre with the above information by **28 February 2015** at the latest.

We thank you in advance for your kind cooperation.

Yours faithfully

Regina Durighello
Director
World Heritage Programme

Copy to
Historic Scotland
UNESCO World Heritage Centre
Regina Durighello
Director, World Heritage Programme
ICOMOS
11 rue du Séminaire de Conflans
94220 Charenton-le-Pont France
France

Your ref.: GB/MA 1485
25th February 2015

Dear Regina,

The Forth Bridge (United Kingdom) -- Additional information II

Thank you for your letter of 17th December 2014, and for the opportunity to provide further information in support of the Forth Bridge World Heritage nomination.

You requested information in relation to the ‘Bridgehead Zone’, the Management System, and plans for Interpretation and Tourism. I hope that the information provided in the paragraphs and table below meet with the requirements of your evaluation team.

1. Buffer Zone

We have prepared a summary description of the suite of designations in a separate document accompanying this letter (see Annex A). With the exception of the projected marine planning area, all of these designations are explained in more detail in the Nomination Dossier (Nomination Document, pp. 88 to 96, and Management Plan pp. 26 to 37).

We have included in the attached document and also separately a consolidated map of the ‘Bridgehead Zone’ depicting the cultural and natural heritage designations, together with the marine planning area. We can confirm that this is being disseminated to stakeholders, regulatory officials and planners through the Forth Bridges Forum and its network of interested parties.
Similarly, we are in the process of finalising with the planning authorities, City of Edinburgh and Fife Councils, the selection of the nine key viewsheds from those provided in the Nomination Dossier. These will be mapped and included in the appropriate local authority and marine planning instruments in order to ensure their protection.

The Steering Group acknowledges the desirability of incorporating the relevant marine and estuary management systems into the management of the property’s setting. These systems are undergoing a strengthening process, and the resulting ‘Scottish National Marine Plan’ is currently before parliament and about to be implemented. We will therefore work directly through Marine Scotland as the Marine Planning Authority, and liaise with Forth Ports as the navigation authority, and the owner of the seabed, the Crown Estate (see Annex A).

2. Management System

Since the Technical Evaluation Mission in October, the Steering Group has contacted all the relevant organisations involved in the regulation of the Marine Planning Area around the Property. These include the owners of the sea bed, Crown Estates, the regulators of the main harbour, Forth Ports, and Marine Scotland. As a consequence, we are including these organisations in the business circulation of the Steering Group, and have invited Paul Bancks, the local Coastal Development Manager for The Crown Estates to join the Steering Group.

At the same time, as stated in Item 1 above, we have explicitly included marine protection in the suite of designations included in the Bridgehead Zone, and have depicted this on the revised map (see Annex A). The area of water around the Bridge forms part of the Scottish Marine Area and is subject to marine planning under the Marine (Scotland) Act 2010 with World Heritage Sites afforded protection through the policies of the Scottish National Marine Plan. Scottish Marine Regions and Marine Planning Partnerships are to be established to address matters at a local level. Marine protection will also be included in an updated version of actions contained within the Management Plan, and will be coordinated with the key viewsheds.

We will also monitor the existing local authorities’ presumption against the construction of large wind turbines whether onshore or offshore. Information on the statutory protection of the setting of the property, which includes potential wind farm developments, can be found pages 88-90 in the Nomination Dossier.

Whilst not being presumptuous about inscription, we acknowledge the need to institutionalise the existing Steering Group. Indeed, the Group, and its parent organisation, the Forth Bridges Forum, will be discussing this issue at its next meeting. At the same time, the property’s Partnership Management Agreement (PMA), which is reviewed and renewed annually, will formally incorporate World Heritage into its remit. The PMA Group’s work will routinely feed into the management and monitoring of the
property, and be fed back to the Steering Group.

3. Interpretation Plan

The Management Plan cited several opportunities and actions focused on the development of an 'Audience Development Plan', but we recognise that the development of separate Interpretation and Tourism Plans is more practical.

Several interpretation activities were included in the Management Plan’s actions, and progress is already being made with a number of these. Perhaps the most significant of these is the 3D digital documentation of the property using laser scanning technologies, a pilot project having been successfully completed last year. Funding for a full digital documentation project has now been secured, and work will commence in April 2015.

The resulting data will provide a valuable resource from which a wide range of interpretation applications can be developed. Some of these will have great education potential. The project has already engaged third-year engineering students at Edinburgh Napier University, and will link up with the Institution of Civil Engineers.

We agree that this, and other interpretation projects, need to be coordinated within an Interpretation Plan. For this reason, the Steering Group decided to commence the process of developing an Interpretation Plan at its most recent meeting (5 February). This task is now added to the updated list of actions in the Management Plan, and will also involve the local communities.

4. Tourism Plan

The need for the development of a Tourism Plan plan that fully respects the proposed Outstanding Universal Value of the nominated property has been recognised for some time, and was one of the reasons for the creation by the Forth Bridges Forum of its ‘Tourism Project Group’ last year, led by VisitScotland, the national tourism organisation for Scotland. The group is working with the local communities, stakeholders and all partners, including Transport Scotland and the owners of the Property, Network Rail, and seeks to co-ordinate and manage the impact of tourism in the area around the property through the creation of a Tourism Marketing Strategy. This will then be used to develop a Tourism Plan and has been added to the updated list of actions in the Management Plan.

A number of initiatives have already commenced, including consultancy work around facilities, signage, visitor access, marketing, retail and potential income generation from tourism in the area around the Forth Bridges. Furthermore, work is under way on the development of a proposed Forth Bridge Experience project which hopes to see the introduction of visitor centres at each end of the Bridge. The intention is that these will provide exhibition space and education facilities as well as public access to the nominated property, and will be a major contributor to the development of a sustainable tourism offering and a major education asset in the region.
Proposals for the visitor centres are being progressed with sensitivity towards the nomination process and the views of local residents and will be put out to public consultation later this year. Meanwhile, the two local authorities, Fife and City of Edinburgh Councils, have already embarked upon the collection of traffic data in the areas around the property with the aim of reviewing road traffic patterns and intensity, public transport and local infrastructure. The local communities regularly contribute to progress on this.

5. Improvement Timetable

We will take action to implement these improvements as follows:

<table>
<thead>
<tr>
<th>Actions</th>
<th>Comment</th>
<th>Start</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Setting - Bridgehead Zone: adoption and assimilation into local authority Development Plans and planning guidance</td>
<td>In progress: New consolidated map completed and attached to this submission. Marine planning included. Bridgehead Zone map circulated to key stakeholders, including Planning Authorities. Summary description of suite of designations in Annex A.</td>
<td>07-10-2014</td>
<td>31-12-2015</td>
</tr>
<tr>
<td>1.2 Setting – Viewshed: agree selection of the 9 key viewsheds with the planning authorities. These will be mapped and included in the appropriate planning instruments, ensuring their protection.</td>
<td>In progress, using the viewsheds defined in the Nomination Dossier. Linkages will be made with supplementary guidance to the relevant Local Development Plans</td>
<td>07-10-2014</td>
<td>31-12-2015</td>
</tr>
<tr>
<td>2.1 Management System: Marine management. Marine protection will also be included in an updated version of actions contained within the Management Plan, and will be co-ordinated with the key viewsheds.</td>
<td>In progress - completion awaiting implementation of new marine legislation and the establishment of Scottish Marine Regions and a Marine Planning Partnership.</td>
<td>07-10-2014</td>
<td>31-12-2015</td>
</tr>
<tr>
<td>2.2 Management System: Institutionalisation of the current Steering Group</td>
<td>In progress: is being addressed by the Steering Group</td>
<td>07-10-2014</td>
<td>31-12-2015</td>
</tr>
<tr>
<td>2.3 Management System: formalising the Partnership Management Agreement (PMA)</td>
<td>In progress: PMA to be reviewed and renewed, and more formal ties with the World Heritage Steering Group established through PMA Group</td>
<td>07-10-2014</td>
<td>30-09-2015</td>
</tr>
<tr>
<td>2.4 Management System:</td>
<td>In progress: we will ensure</td>
<td>05-02-2015</td>
<td>31-12-2015</td>
</tr>
<tr>
<td>Actions</td>
<td>Comment</td>
<td>Start</td>
<td>Deadline</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Wind Turbines</td>
<td>that any proposed onshore or offshore wind turbines are given full assessment in terms of potential impacts on the setting of the bridge.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Interpretation Plan</td>
<td>In Progress: Steering Group has agreed to commence work on the Plan, including existing actions relating to Audience Development, all of which will involve the local communities.</td>
<td>05-02-2015</td>
<td>31-12-2015</td>
</tr>
<tr>
<td>4. Tourism Plan</td>
<td>In Progress: Tourism Group established and already working on Tourism Strategy. Steering Group has started work on the Tourism Plan in consultation with the local communities.</td>
<td>05-02-2015</td>
<td>31-12-2015</td>
</tr>
</tbody>
</table>
| 5. Management Plan: Actions update | **In progress**: the lists of Actions outlined in the Management Plan will be updated and refreshed for 2015-16 issued later this year, together with a progress report | 05-02-2015 | 31-08-2015
 | | ongoing annually to 2021 |

We hope very much that the additional information we have provided answers your questions. If, however, you require further information or clarification, please do not hesitate to let us know.

Yours sincerely,

Hannah Jones
World Heritage Site and Underwater Policy Advisor
Title: The Forth Bridge: Bridgehead Zone
Scale: 1:30,000 @ A4
Projection: British National Grid

Key:
- Nominated Property
- Bridgehead Zone Boundary
- Inventory Battlefield
- Conservation Area
- Gardens and Designed Landscape
- Listed Building
- Scheduled Monument
- Natural Heritage Protected Sites
- Marine Planning Area
- Green Belt

Contains public sector information and Ordnance Survey data © Crown Copyright 2015 Ordnance Survey (Licence Number 100021521)
FORTH BRIDGE WORLD HERITAGE NOMINATION: SUPPLEMENTARY INFORMATION

Bridgehead Zone

The Forth Bridge (2013) seen here from the listed Railway Pier in North Queensferry Conservation Area, designated for cultural heritage, viewed across a bay that is a Site of Special Scientific Interest, Ramsar and Special Protection Area for nature conservation, within the planned Scottish Marine Region of the Tay and Forth Estuaries. A part of the Inverkeithing battlefield is on the left and part of the Dalmeny Designed Landscape and Edinburgh’s Green Belt is seen through the cantilevers of the bridge over an island that is a scheduled monument.

Supplementary information for ICOMOS evaluation, February 2015
Map 1: Forth Bridge, nominated World Heritage Site, ‘Bridgehead Zone’
FORTH BRIDGE WORLD HERITAGE NOMINATION: SUPPLEMENTARY INFORMATION

Bridgehead Zone

1. Introduction

All necessary measures for the protection of the immediate setting of the Property are in place, and together form the Bridgehead Zone which, in effect, acts as an area protected by a combination of statutory natural and cultural designations, and through local authority and marine planning systems. This is represented above in Map 1 (also supplied as a separate file), and in the short descriptions of the various designations provided in the text below.

Map 1 itself contains the aggregation of planning designations that reinforce the protection afforded the Bridgehead Zone. More detailed information on cultural and natural designated sites and areas in the immediate setting of the Property are included in the Nomination Dossier, and are indicated here in Map 2 (Cultural Designations) and Map 3 (Natural Designations) below. The principal difference in Map 1 is the reference to the Marine Planning Area, covering all of the water around and over which the property is situated.

2. Listed Buildings

The Forth Bridge itself is listed at Category ‘A’. This gives it the highest level of statutory protection for a building that is in use, and any change that affects the special interest of the bridge requires listed building consent. This has to be obtained from both City of Edinburgh and Fife Councils, with advice in certain circumstances from Historic Scotland on behalf of Scottish Ministers.

The Bridgehead Zone contains around 200 listed buildings, each of which has a setting that is protected in law.

3. Scheduled Monuments

Within the Bridgehead Zone, each with a protected setting, are:
- The Chapel of St James, patron saint of Travellers/Pilgrims, an essential place of worship for all ferry travellers in the middle ages (in Fife)
- The Island of Inchgarvie, specifically excluding the Forth Bridge. The central cantilever tower of the bridge stands on rock that is near the island, but is not connected to it above the low waterline (in the City of Edinburgh)
- Harlow Cairn, Dalmeny Estate (in the City of Edinburgh)

4. Conservation Areas

There are three Conservation Areas within the Bridgehead Zone, which are:
- North Queensferry Conservation Area
- Queensferry Conservation Area
- Dalmeny Conservation Area
The coastal conservation areas (Queensferry and North Queensferry) extend as far as the jurisdiction of local planning authorities can go, which is to mean low water, where the tide is furthest out. Planning authorities have a duty to preserve or enhance the character of conservation areas.

5. Gardens and Designed Landscapes

The Inventory of Gardens and Designed Landscapes includes two that come into the Bridgehead Zone, both on the south side of the Property. These are parts of the Dalmeny and Hopetoun House estates, as explained in the nomination dossier.

6. Battlefields

The national Inventory of Battlefields includes one that is partially included within the Bridgehead Zone. This is situated on the north side of the property and is associated with the Battle of Inverkeithing, which took place in 1651. Most of the bloodshed occurred further north and east of Inverkeithing.

7. Local Development Plan Policies: Green Belt and Open Space.

Local Authorities have the power to designate ‘Green Belt’ areas through Local Development Plans. The fundamental aim of Green Belt Policy is to prevent urban sprawl by keeping land permanently open. The essential characteristic is their openness and permanence. Green belts prevent coalescence of towns and villages, so keeping the separateness of Queensferry from Edinburgh, and they assist urban regeneration by focussing development in towns rather than outside of them.

In the case of the Bridgehead Zone, an area of Green Belt is long-established to the south of the Property on the south-east edge of South Queensferry. This forms the north-west end of a crescent that encircles all of urban Edinburgh. See policy ENV10 http://www.edinburgh.gov.uk/downloads/file/3839/second_proposed_local_development_plan_june_2014

Also in the Edinburgh Local Development Plan is policy ENV18 for “protection of open space”, which appears as white space on Map 1. At South Queensferry, the land between the Port Edgar shore road and the old railway line, widening as it goes under the Forth Road Bridge and eastward is so marked in the local plan, as are the Queensferry High School grounds and Fairy Glen down to the green space between the Main Street and Hawes. This is the policy for green space within urban settlements, whereas Green Belt must be a more continuous and large rural area in order to have its effect.

In Fife, on the north side of the Property, the open space within the Bridgehead Zone comprises pockets within the Conservation Area, an area of escarpment beyond that covered by a Tree Protection Order, and Sites of Special Scientific Interest, one of them a wildlife reserve managed by the Scottish Wildlife Trust.

8. Natural Designations
The Bridgehead Zone contains several types of protected natural site. These are SSSI (Sites of Special Scientific Interest), Ramsar (wetland sites), SPA (Special Protection Areas), and Ancient Woodland. The Ramsar International Convention and SPA areas are precisely the same as the national SSSI designated shore line areas, but are managed differently according to the various species that pass through or stay in those habitats. All these are regulated through Scottish Natural Heritage (SNH), the national body responsible for protecting the natural environment, and provide statutory protection within the immediate setting of the property. In the interests of clarity, these four natural designations have been combined within Map 1, but more detail can be found in Map 3 below and in the nomination dossier itself.

9. Marine Regulation

The original maps within the Nomination Dossier did not refer to marine protection, but in response to comments received during the Technical Evaluation Mission in October 2014, we have included the projected regional marine planning area within the Bridgehead Zone, and this is depicted on Map 1.

The area of water around the Bridge forms part of the Scottish Marine Area and is subject to marine planning under the Marine (Scotland) Act 2010 with World Heritage Sites afforded protection through the policies of the Scottish National Marine Plan. In due course, matters at a local level will be addressed through regional marine planning. The boundaries of Scottish Marine Regions are not yet finalised in statute, and the statutory Marine Planning Partnerships remain to be established.

In practice, responsibility for the management and regulation of the areas of water in the Bridgehead Zone falls to the owners of the sea bed, Crown Estates, the regulators for navigation, Forth Ports, and Marine Scotland. As a consequence, these organisations are now included in the business circulation of the Steering Group. Paul Bancks, the local Coastal Development Manager for The Crown Estates is invited to join the Steering Group.

Marine plans cover the area seaward from mean high water. Terrestrial planning covers the area landward from mean low water, with the exception of fish farming where local authority controls extend offshore. As a consequence, a dual protection exists on the foreshore between mean high and low water. This protects the immediate foreground shore and shallow water in views towards the Forth Bridge.
Map 2: showing cultural designated places close to the property
Map 3: Natural designated areas close to the property