The following points have been settled under the decision no. 422

On account of the fact that the Göbeklitepe Archaeological Site located at Örencik settlement Haliliye, Şanlıurfa registered with parcel no 297 and 159 in land title has the characteristics of the Cultural Heritage in need of Protection, It has been registered as 1st Degree Archaeological Site in accordance with the Law No. 2863.

For the proper progression of the scientific excavations at the Archeological Site, the necessary expropriations shall be introduced as immediate as possible; in this regard, expropriation demands shall be notified to the relevant departments of the Ministry of Culture and Tourism.
Despite the fact that Göbeklitepe has been inscribed on the Tentative List of World Heritage Sites, UNESCO, interaction and transgression zone encircling the 1st Degree Archaeological site has been regarded as ineligible in terms of legal conservation status.

The interaction and transgression zone as plotted with the coordinates in the map scaled 1/10000 in the Annex 2 shall be turned into a 3rd degree archaeological Site, the border of 1st Degree Archaeological site shall remain unchanged.

The trees planted recently in the 1st Degree Archaeological Site which damages the archaeological elements shall be uprooted by the Excavation Directorate and planted in different areas; the symbolic wish-tree (mulberry tree) up the hill can be exempted depending on the Excavation Directorate’s discretion.

In accordance with the resolution of the Superior Council of Cultural and Natural Heritage Conservation dated November 05, 1999 no 658, the conditions of conservation and utilization for Göbeklitepe 1st Degree Archaeological Site located at Örencik settlement Haliliye, Şanlıurfa and the conditions of construct for 3rd Degree Archaeological Site in the transitional period shall be determined as specified in the Annex 1.
ANNEX 1

The Conditions of Conservation and Utilization for Göbeklitepe 1st Degree Archaeological Site

1. An Archeological site which is to be conserved as it is, with except of scientific studies.
2. All sorts of construction are strictly prohibited.
3. The compulsory substructure by public or private enterprise will be assessed by the Board in line with the opinions of Museum Directorate or Excavation Director if available.
4. New agricultural land cannot be created in this area. Agricultural activities are strictly forbidden. The trees which damage the archaeological elements can be uprooted by the Excavation Directorate.
5. It is not allowed to convey stone soil, sand or etc., to sink for lime, stone, brick, marble, sand or etc., and to throw rubble, dross, industrial waste or etc.
6. The incorporation and subdivision of the land can be performed by considering the nature of the cultural heritage, after the permission of the Board.

The Conditions of Construction in the transitional period for the Göbeklitepe 3rd Degree Archaeological Site

1. Owing to the fact that Göbeklitepe is one of the significant World Heritage Sites, the main principle of the conservation oriented zoning plan purposes to protect the silhouette of the 1st Degree Archaeological Site by way of preventing the construction, thusly All sorts of construction are strictly prohibited up to a conservation oriented zoning plan.
2. Within this site, sightseeing road, parking lot, WC, ticket office, watch hut can be constructed after the permission of the Board.
3. The incorporation and subdivision of the land can be performed by considering the nature of the cultural heritage, after the permission of the Board.
4. It is not allowed to convey stone soil, sand or etc., to sink for lime, stone, brick, marble, sand or etc., and to throw rubble, dross, industrial waste or etc.
5. The provisions of the Law on the Conservation of Cultural and Natural Property no 2863, the relevant regulations and the the resolution of the Superior Council of Cultural and Natural Heritage Conservation dated November 05, 1999 no 658 prevails on this sites.
The following points have been settled under the decision no. 499

The projects submitted with regard to the contemplated walking/working platform and roof covering at Göbeklitepe 1st Degree Archaeological Site located at Örencik settlement Haliliye, Şanlıurfa within have been approved.

The implementation can be performed under the control of the Göbeklitepe Excavation Director.

The static projects and project revisions for the roof covering to be drawn up during the implementation (according as the observations on the ground) shall be submitted to the Council.
The following points have been settled under the decision no. 1063:

The projects submitted with regard to the contemplated roof covering on archaeological area situated in the northwest of Göbeklitepe 1st Degree Archaeological Site located at Örencik settlement Haliliye, Şanlıurfa within have been approved.

The implementation can be performed under the control of the Göbeklitepe Excavation Director.

The project revisions for the roof covering to be drawn up during the implementation (according as the observations on the ground) shall be submitted to the Board.
The following issues have been settled under the decision no. 1798

In line with the opinions of the Excavation and Area Directorates of Göbeklitepe The revision project of Göbeklitepe Site Visitor Center, partly within the interaction and transgression zone of the Göbeklitepe 1st Degree Archaeological Site located at Örencik settlement Haliliye, Şanlıurfa and within the management site of Göbeklitepe has been approved.

The projects to be prepared for implementation shall be submitted to the Board.
The following points have been settled under the decision no. 2088

The project of Göbeklitepe Site Visitor Center located at Örencik settlement Haliliye, Şanlıurfa, within Göbeklitepe 3rd Degree Archaeological Site, the borders of which is determined by the Council pursuant to the decision No 23.02.2016/1940 has been approved.

However, it is not able to conduct a project before a drilling excavation on the 3rd Degree Archaeological Sites; thusly, the report of the Museum Directorate will be submitted after the drilling works by the Sanlıurfa Museum Directorate.

Before submission of the drilling reports to the Council, any projects cannot be applied.
The following issues have been settled under the decision no. 2132.

The master zoning plan scaled 1/5000 and the implementary zoning plan scaled 1/1000 drawn up by Şanlıurfa Metropolitan Municipality for the Göbeklitepe Site Visitor Center located at Örencik settlement Haliliye, Şanlıurfa, within Göbeklitepe 3rd Degree Archaeological Site have been approved.

Taking into account the project of Göbeklitepe Site Visitor Center; there is no inconveniency to conduct the project on the basis of the outcomes of the drilling excavation by Sanlıurfa Museum Directorate that reveals the non-existence of cultural objects in the area.
Concept

for conservation and restoration measures for the preservation of Neolithic monuments at Göbekli Tepe, Turkey

Fig. 1: Detail from Building B

Büro für Restaurierungsberatung, Bonn
Compiled: 19.06.2016
Contracting authority:
Prof. Dr. Ricardo Eichmann
Jens Notroff M.A.
German Archaeological Institute
Orient-Department, Göbekli Tepe Project
Podbielskiallee 69-71
D-14195 Berlin
Tel.: +49-3018-7711-203
Fax: +49-3018-7711-189
Jens.Natronff@dainst.de
www.dainst.org

Contractor:
Gereon Lindlar Dipl.-Rest. (FH)
Büro für Restaurierungsberatung
Am Büchel 31
D-53173 Bonn
Tel: +49-228-350 5803
mobil: +49-177-350 8680
Lindlar@restaurierungsberatung.de
www.restaurierungsberatung.de

in collaboration with:
Tom Zimmermann Dipl.-Rest. (FH)
Restaurierungsatelier
August-Bebel-Str. 61
D-14482 Potsdam
Tel: +49-331-9511225
mobil: +179-2076691
kontakt@tz-restaurierungsatelier.de
http://www.tz-restaurierungsatelier.de
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Description of the site</td>
<td>4</td>
</tr>
<tr>
<td>2 State of archaeological excavations</td>
<td>4</td>
</tr>
<tr>
<td>3 Damage profiles</td>
<td>6</td>
</tr>
<tr>
<td>3.a Residues</td>
<td>6</td>
</tr>
<tr>
<td>3.b Erosion</td>
<td>8</td>
</tr>
<tr>
<td>3.c Changes to static variables</td>
<td>11</td>
</tr>
<tr>
<td>3.d Breaks in worked stones</td>
<td>12</td>
</tr>
<tr>
<td>3.e Impacts from excavation and visitor-presentation</td>
<td>13</td>
</tr>
<tr>
<td>4 Aims within the frame of monument preservation at Göbekli Tepe</td>
<td>14</td>
</tr>
<tr>
<td>4.a Archaeological aims</td>
<td>14</td>
</tr>
<tr>
<td>4.b Heritage Aims</td>
<td>14</td>
</tr>
<tr>
<td>4.c Aims for presentation</td>
<td>14</td>
</tr>
<tr>
<td>4.d Summary: Overriding preservation aims</td>
<td>15</td>
</tr>
<tr>
<td>5 Conservation concept</td>
<td>15</td>
</tr>
<tr>
<td>5.a Direct weather protection</td>
<td>15</td>
</tr>
<tr>
<td>5.b Protection of open (unroofed) areas</td>
<td>15</td>
</tr>
<tr>
<td>5.c Static protection</td>
<td>16</td>
</tr>
<tr>
<td>5.d Conservation measures</td>
<td>17</td>
</tr>
<tr>
<td>6 Scientific analyses</td>
<td>19</td>
</tr>
<tr>
<td>6.a Settling mortar in the dry-walls</td>
<td>19</td>
</tr>
<tr>
<td>6.b Plaster mortar on the dry walls</td>
<td>19</td>
</tr>
<tr>
<td>6.c Limestone objects in the quarries</td>
<td>19</td>
</tr>
<tr>
<td>6.d Terrazzo-mortars in floors</td>
<td>19</td>
</tr>
<tr>
<td>6.e Mortar from the mixing pit, or so-called Terrazzo-Pit</td>
<td>19</td>
</tr>
<tr>
<td>7 Scheduling</td>
<td>20</td>
</tr>
</tbody>
</table>
1. Description of the site

The early Neolithic tell of Göbekli Tepe lies some 15 km north-east of the modern city of Şanlıurfa in Southeast Turkey. The prehistoric mound, which has a diameter of approximately 300 m and covers an area of 9 ha, rises some 15 m above the surface of a star-shaped limestone plateau, the highest point of the Germuş mountain range, at the foot of the Taurus Mountains. The Neolithic site has been known to archaeologists since the joint survey undertaken in Southeast Anatolia by the Universities of Istanbul and Chicago in the 1960s, albeit that the monumental architecture remained unknown until its discovery by Klaus Schmidt in 1994. Since this time, annual excavations have been undertaken by the German Archaeological Institute in the frame of a German Research Foundation long-term funding program.

In the course of these excavations, meanwhile culminating to just over two decades of fieldwork, numerous aceramic Neolithic structures have been revealed. According to most recent knowledge, these structures can be divided into two main groups: monumental round-oval buildings from the 10th millennium BC, comprising walls which feature large T-shaped limestone monoliths inserted at regular intervals and with two larger T-shaped pillars in their centre; and smaller rectangular buildings with a reduced number of smaller T-shaped monoliths which date to the 9th millennium BC.

At the close of their respective ‘life-cycles’, the chronological sequence of which remains an issue of on-going research, the earlier monumental buildings were backfilled or ‘buried’. The backfill material, comprised mainly of fist-sized limestone rubble, flint flakes and tools, fragments of sculptures, and especially large amounts of animal bone, gives reason to suspect that the site could have been a central meeting-place for different hunter-gatherer groups living in the site’s catchment. As a place for ritual celebrations and encounters, Göbekli Tepe differs markedly from otherwise known contemporaneous domestic sites in the region. Not only was it founded at a geographical location quite untypical for domestic settlements, it also lacks characteristic domestic architecture, instead featuring large numbers of ‘special buildings’, which only occasionally occur at other sites.

2. State of archaeological excavations

Following current insights from excavation and research, a total of three different archaeological levels can be discerned at Göbekli Tepe. The age of these levels has been determined based on archaeological and typological considerations, for example based on comparisons with known stone tool forms and other artefacts, as well as upon a collection of radiocarbon ages made on organic remains recovered from the site.

Level III is the so far earliest level discerned at Göbekli Tepe. This level, which is assigned to the Pre-Pottery Neolithic A (PPNA) and is dated to the 10th millennium BC, features the well-known monumental buildings, diameters of which range from between 10 and 30 metres. The monolithic T-pillars, a characteristic of these buildings, are up to 4 metres in height and are arranged in a circle-oval facing two larger central T-pillars. Whereas the
outer pillars are incorporated into the containing walls, the two larger central pillars are ‘free-standing’. Low reliefs applied to pillars include, for example, depictions of hands and arms, as well as elements of clothing in the form of stola, belts and fox-fur loincloths; these imply that the monoliths are anthropomorphic representations, where the top of the T-pillar is a highly abstract portrayal of the human head and the shaft of the pillar is the body. Generally speaking, the (‘free-standing’) central pillars of the buildings are found inserted into podests, which were carefully carved from the natural limestone plateau.

A total of five monumental stone buildings (A, B, C, D and G) have so far been discovered in the Main Excavation Area (Southeast-Hollow). Building F was revealed during excavations on the summit of the Southwest-Mound. Building E, although only identifiable due to the preserved pillar-podests carved into the natural limestone plateau (the rest of this structure having been removed in antiquity), was identified on the Western-Plateau. Finally, Building H was discovered in the Northwest-Hollow.

The monumental buildings were found partially superimposed by buildings from the younger Level II, which is assigned to the Early Pre-Pottery Neolithic B (EPPNB) and dated to the 9th millennium BC. These buildings are characterised by their rectangular ground-plans and measure approximately 3x4 metres. The EPPNB structures could be considered smaller versions of the earlier monumental round-oval buildings. Also the number and size of PPNB pillars is considerably reduced; sometimes the buildings have just two central pillars (or none at all), the biggest of which do not exceed heights of 2 metres. Numerous rooms feature a ‘terrazzo’-like (lime-plaster) floor.

Finally, Level I is referred to as a Mixed-Surface-Layer which has developed in the course of time due to erosion processes and farming activities at the site. This layer also contains relevant find materials.
3 Damage profiles

3.a Residues

Sinter formation on stone surfaces

In the course of the millennia a deposit of lime sinter has formed on many of the small and large limestone objects. Over the long-term, surface water in unknown quantities and following undetermined paths has caused small amounts of limestone to dissolve, after which it has become re-deposited upon the surfaces of limestone objects. This re-deposition can be observed intermittently on the under-surfaces of stone objects as solid structures, but lacking signs of decompaction (granulation). On the basis of currently available information, lime sinter formation poses no recognisable threat to the limestone objects.

![Sinter formation on stone surfaces](image)

Fig. 2: Line sinter formation as seen on the surface of a worked limestone object (T-pillar)

Restoration evaluation: Lime sinter formation is a natural and irreversible aging process which has no further effects on the stones following their excavation. The long-term change poses no damage risk.

Action required: None.
Contamination of Surfaces

All exposed prehistoric structures and worked limestone objects are exposed to dust in the environment. This dust settles upon the objects, leading to the accumulation of a grey-brown deposit, in contrast to the natural light-coloured limestone surfaces, which become darkened. Consequently, low-reliefs can develop what might be described as a light shadow effect.

![Worked stone surface with deposited mineral dust.](image)

Fig. 3: Worked stone surface with deposited mineral dust.

Restoration evaluation: There is a disturbing optical change which can affect the reception of afflicted objects.

Action required: Medium-term conservation.
3.b Erosion

Dry-walls

It would appear that the best protection for the built structures at Göbekli Tepe is the (removed) backfill material. The backfill provides the objects with a statically and climatic stabile matrix, which also protects the archaeological remains from human interference.

As soon as the structures are excavated, decay processes begin, which depending on materials and level of exposure can be very rapid. Ventilation is the most dangerous factor contributing to destruction. Following excavations archaeological remains are exposed to extreme changes in temperature and moisture, ranging from consistent levels to extreme fluctuations. As a consequence, the loamy mortar and walls become degraded in a relatively short space of time.

![Wall with eroded loam-mortar](image)

Fig. 4: Wall with eroded loam-mortar

The weather-related and rapid degradation of dry-walls and worked stones is caused by:

- Pronounced oscillations in temperature and moisture (day/night)
- Precipitation
- Wind erosion

Restoration evaluation: This damage has far-reaching implications for the all buildings and the entire site. In many areas, the walls are at high risk, and the situation poses a significant threat.

Erosion of worked stones is greatly reduced by protective roofing.

Action required: Short-term conservation.
Worked Stones

In the absence of protective roofing – and comparable to the dry-walls – the worked stones suffer considerably due to weathering; however, following the construction of protective shelters, they are largely protected. Due to the relatively homogeneous morphology of the limestone, they can be presented long-term in currently prevailing contexts without risk of notable erosion.

Fig. 5: Worked stones made from local limestone.

Restoration evaluation: Local limestone is durable. Erosion of worked stones can be dramatically reduced through the construction of protective roofing.

On the basis of currently available information there is no damage to any worked stone which would necessitate structural consolidation measures.

Action required: No measures are required for worked stones under protective roofing, with the exception of surface cleaning and minor conservation measures in areas with cracks and/or breaks.
Terrazzo-floors

It is apparent that the relatively hard, so-called ‘terrazzo-floors’ with their smoothed surfaces begin to erode very quickly after excavation. Due to a rapid leaching of the mortar matrix, stone inclusions become detached, and surface layers dissolve quickly.

![Terrazzo-floor in the open air with increasingly loosened surface structure.](image)

Fig. 6: Terrazzo-floor in the open air with increasingly loosened surface structure.

Restoration evaluation: Rapid destruction of objects. The situation poses a significant threat.

Action required: Short-term conservation.
3.c Changes to static variables
Inclined pillars

Upon removal of the backfill, vertically standing (or already inclined) T-pillars are robbed of their static support. For this reason, they require supporting structures, which in the course of excavations has been achieved using wooden beams and steel ropes.

Fig. 7: Inclined pillar with provisional support structure

Restoration evaluation: All pillars are in secure, though for aesthetic reasons a renewal of supporting structures is recommended.

Action required: Medium-term conservation.
3.d Breaks in worked stones

Broken worked stones

Some of the pillars, as well as vertical benches, are broken. Although these breaks could testify to intentional destruction in past times, it cannot be ruled out that subsidence and/or earthquakes are responsible in some cases.

All broken worked stones are secure.

Restoration evaluation: All broken worked pieces are secured / in secure positions. As such, there is no risk further of damage to them in the mid-term. Nevertheless, it is recommended that broken objects are reassembled using a reliable methodology in the long-term; this will avoid damage to broken pieces in the future, also culminating in an improved readability of the objects.

Action required: Long-term restoration.
3.e Impacts from excavation and visitor-presentation

Slope-slip in open trenches

Owing to the position of the so-called Main Excavation Area in a hollow of the tell (Southeast-Hollow), Buildings A-D are situated in an area that is adjacent to slopes in three directions. For this reason, there is an increased risk of slope slip, which is more pronounced due to the presence of the excavation trenches. At present, damage to the excavated monuments by slope-slip cannot be entirely ruled out, albeit that clear signs of such a risk are not visible at present.

Fig. 10: Slope with backfill behind the dry-walls

Restoration evaluation: Based on observations relating to rubble deposition and sinter formation, we expect that the backfill material in the entire area has sufficiently compacted over the millennia.

Action required: Long-term monitoring by means of dividing walls.

Missing pathways

It is only natural that pathways develop at a site in the course of its excavation. Quite inadvertently, these pathways are oriented on excavation trench balks and excavated archaeological structures. Over time this leads to the gradual erosion – stone for stone – of these routes.

Restoration evaluation: On-going damage at multiple locations.

Action required: Short-term temporary or permanent measures.
4 Aims within the frame of monument preservation at Göbekli Tepe

4.1 Archaeological aims

- Intact preservation of un-excavated parts of the site:
 Some parts of the excavation areas have remained unexcavated, mainly due to logistical reasons and/or static considerations. In spite of the numerous excavated structures, the site is still an active archaeological excavation site. The balks between excavation trenches and adjacent unexcavated plots must be protected as areas for potential future fieldwork.

- Possibilities for further archaeological evaluation:
 Even after the implementation of conservation and restoration measures, continued archaeological studies on objects should be possible.

4.1 Heritage Aims

- Long-term preservation of excavated structures and materials:
 Conservation measures should have a long-term focus; provisional measures should be avoided in order to keep burdens to a minimum.

- Authentic presentation of the originally exposed state:
 Use of inconspicuous materials – identifiable but low-key in appearance; use of locally available materials and resources.

- Minimal intervention in conservation:
 Reversible measures should be adopted.

4.1 Aims for presentation

- Comprehensive presentation of the historical inventory:
 Preservation measures should guarantee a secure and long-term presentation of the excavated structures. Ideally, safety measures which obscure, cover or compromise archaeological structures in any way should be avoided.

- Improve readability of archaeological structures:
 Building structures and contexts of individual objects should be easily identifiable for the visitor. This aim can be reached by ‘calming the surface’ of the excavated areas, e.g. through the removal of unclear structures.

- Minimisation of modern substructures in the historical inventory:
 The monumental buildings should be presented with as few modern additions as possible.
4.d Summary: Overriding preservation aims

The excavated monumental buildings at Göbekli Tepe are an extremely important discovery of immense significance for the history of humanity.

In light of the aforementioned aims, the following points can be discerned which may serve as a guideline to all future preservation efforts:

- Stabilisation of archaeological features in their excavated conditions;
- Least possible change to exposed structures;
- Limitation of all measures to the absolute minimum;
- High sustainability of the measures;
- Readable presentation of the prehistoric buildings and structures.

5 Conservation concept

Considering all the above, the following conservation concept for Göbekli Tepe is apparent.

All structures revealed in the course of excavations require preservation, and it is essential that such measures are implemented. This must assume a close cooperation between archaeologists and conservation experts with regard to all necessary steps.

5.a Direct weather protection

The use of protective shelters leads to a significant reduction of erosional processes; as such, shelters are a highly recommended means of conservation.

A provisional protective shelter is already installed above Buildings A-D. In 2017, this provisional shelter will be replaced by a permanent structure. Therefore, these buildings will continue to be protected from the brunt of weather conditions at the site.

Necessary for Buildings: A, B, C, D, Northwest-Hollow and F

Implementation: Buildings A, B, C, D, Northwest-Hollow, already planned

Realisation: Buildings A, B, C, D, Northwest-Hollow, under construction

5.b Protection of open (unroofed) areas

In contrast to aforementioned buildings (see above), those structures located in areas of the excavation which will not be covered by a protective shelter are at an increased risk through exposure to weathering.

The excavated structures in these areas must also be protected in a permanent way; otherwise they are at risk to erosion processes and ultimately destruction within just a few years. The only available and reversible method of protection for these structures is covering with geotextiles and backfilling of excavation trenches with earth and stone.
material to surface level. This methodology is the most efficient measure for long-term and best possible protection of the discovered prehistoric structures. Should it be opted to display these structures to the public at a later date, they can be re-excavated with a minimum of effort.

Necessary for Areas: K9-97 to L9-47; and possibly K10-58 to K10-90

Implementation: open, but urgent

Realisation: open, but urgent

5.c Static protection

Limestone pillars, large worked stones

- Securing freestanding pillars by means of steel clamps:
 Installation of U-shaped support systems not directly adjacent to the pillars and with minimal clamping on the upper side. Views of pillars should be free from all sides, i.e. with minimal obstruction of view; this can only be realised with careful planning of essential support systems.

- Securing and support of inclined pillars:
 Straightening of inclined pillars is not recommended;
 Installation of steel clamps as above, though with more extensive clamping of the pillar where this cannot be avoided, e.g. due to difficult access situations.

Necessary for Buildings: A, D and H

Implementation: open

Realisation: open
5. d Conservation measures

Limestone pillars, large worked stones

- Dry cleaning of all stone surfaces;
- Seldom: Adhesion of breakages and fragments
- Seldom: Filling of cavities;
- Seldom: Filling of cracks.
- Advice: No structural adhesion of stone necessary

Necessary for Buildings: all
Implementation: open
Realisation: open

Wall structures

- Dry cleaning of surfaces;
- Filling with mud mortar with addition of small amounts of lime hydrate to improve effectiveness against erosion and insects (bees), reduction in thickness of mortar layers, and inclusion of larger additives and limestone fragments;
- Filling of fault areas in the prehistoric wall structure with small-sized and similar-shaped replacement materials.
- Careful consideration of colour and texture of all replacement materials to guarantee close similarities with the archaeological inventory of the site.

Necessary for Buildings: all
Implementation: open
Realisation: open

Wall coping

- Dry surface cleaning;
- Filling as recommended for wall structures (see above);
- Careful consideration of water drainage;
- Filling of larger areas with small-sized stones, when these are subsequently sealed with mortar replacement material.

Necessary for Buildings: all
Implementation: open
Realisation: open
Enclosing walls

- So as to avoid the compilation of costly static reports, necessary test areas in wall structures must be considered in the planning phase; areas should be carefully chosen so that signs of surface movement (cracking) in adjacent areas, and potential impacts on test replacement mortars, can be monitored.

Necessary for Buildings: all
Implementation: open
Realisation: open

Terrazzo floors

Exposed terrazzo floors erode relatively quickly. For this reason, they have been re-covered with fine materials, e.g. sand/earth. This methodology – combined with a covering of geotextiles – is the most effective means of protection.

- At present, recommendations for restoration of terrazzo floors cannot be provided. In the medium-term, the surfaces of these floors must be analysed and appropriate preservation methods developed. The aim must be the permanent presentation of selected floors to the public, which should at the same time be protected to the best possible standards.

Necessary for Buildings: B and F, as well as Areas L09-27, L09-07 and K09-97
Implementation: open
Realisation: medium-term
6 Scientific analyses
For the realisation of conservation concepts, the following analyses are essential:

6.a Settling mortar in the dry-walls
- Analysis of mortars;
- Physikomechanical properties of mortars.

6.b Plaster mortar on the dry walls
- Mortar analysis.

6.c Limestone objects in the quarries
- Petrography (varieties of stone);
- Physikomechanical properties of limestone;
- Drill-cores from stone quarries and production of test materials (e.g. to study adhesive properties and injection).

6.d Terrazzo-mortars in floors
- Mortar analysis;
- Physikomechanical properties of mortars.

6.e Mortar from the mixing pit, or so-called Terrazzo-Pit
- Mortar analysis;
- Comparison with mortars found in excavated buildings;
- Physikomechanical properties of mortars.

Irrespective of results from aforementioned analyses, test sequences are absolutely essential, including dedicated testing areas.
7 Scheduling

A detailed schedule for conservation and restoration measures can only be proposed following clarification of the desired approach.

Any planning of an implementation schedule should run parallel with the aforementioned scientific analyses (see part 6). Furthermore, all steps should be planned in close cooperation with archaeologists and local heritage authorities, i.e. the Ministry of Culture through the Şanlıurfa Museum.

Bonn, 19.06.2016

Gereon Lindlar

Tom Zimmermann
Yapı ruhsatı müracaatı / Genehmigungsplanung

Tarih / Datum

İnşaat Sahibi / Bauherr

Deutsches Archäologisches Institut
Podbielskiallee 69-71, 14195 Berlin
Deutschland
Tel : +49-(0)30 - 187711-0
Fax : +49-(0)30 - 187711-168

Mimar ve Yapı Mühendisi / Architektur und Tragwerk

arge göbekli tepe
ekleyer.kobitz.letzel.freivogel
gesellschaft von architekten mbh
Oranienstraße 25, 10999 Berlin
Tel. +49 (0)30 - 695 80 86-60
Fax +49 (0)30 - 695 80 86-80

EiSat GmbH
Eisenloffel . Sattler + Partner
Hasenheide 54, 10967 Berlin
Tel. +49 (0) 30 - 319 85 50 - 30
Fax: +49 (0) 30 - 319 85 50 - 50
<table>
<thead>
<tr>
<th>İçindekiler / Übersicht der Pläne</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Plan içeriği / Planinhalt</th>
<th>Çizim No. / Plan-Nr.</th>
<th>Ölçek / Maßstab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koruma çatısı / Schutzdach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaziyet plani / Lageplan</td>
<td>214_04_101</td>
<td>1:200</td>
</tr>
<tr>
<td>Kat plani / Grundriss</td>
<td>214_04_102</td>
<td>1:50</td>
</tr>
<tr>
<td>Boyuna kesit / Längsschnitt</td>
<td>214_04_103</td>
<td>1:50</td>
</tr>
<tr>
<td>Doğudan görünüm / Ansicht Ost</td>
<td>214_04_104</td>
<td>1:50</td>
</tr>
<tr>
<td>Enine kesit / Querschnitt,</td>
<td>214_04_105</td>
<td>1:20</td>
</tr>
<tr>
<td>Güneyden görünüm / Ansicht Süd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kilavuz detaylar / Leit-Details</td>
<td>214_04_301</td>
<td>Ölçeksiz / ohne Maßstab</td>
</tr>
<tr>
<td>Taşıyıcı sistem şeması / Isometrie Tragwerk</td>
<td>214_04_302</td>
<td>Ölçeksiz / ohne Maßstab</td>
</tr>
<tr>
<td>İnşaat yapım aşamaları / Bauphasen</td>
<td>214_04_303 ff</td>
<td>1:20, 1:10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geçici koruma ve çalışma iskelesi / Provisorische Arbeitsbühne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taşıyıcı sistem şeması / Schema Tragwerksübersicht</td>
</tr>
<tr>
<td>Kesitler şeması / Schema Schnitte</td>
</tr>
<tr>
<td>Kilavuz detaylar / Leit-Details</td>
</tr>
</tbody>
</table>
Koruma çatısı / Schutzdach

Planlar / Pläne:
Taşıyıcı sistem şeması / Isometrie Tragwerk

1. Güneybatı görünümü / Süd-West Ansicht

2. Kuzeybatı görünümü / Nord-West Ansicht
İnşaat yapım aşamaları / Bauphasen

1. Geçici koruma ve çalışma işkelesi nin kurulumu / Aufbau der Schutz- und Arbeitsbühne

2. Ziyaretçi geçidinin montajı / Montage des Besucherstegs

3. Çatı taşıyıcısının montajı / Montage des Dachträgers

4. Çatının tamamlanması ve çalışma işkelesinin kaldırılması / Fertigstellung des Hauptdachs und Entfernung der temporären Schutz- und Arbeitsbühne
Geçici koruma ve çalışma iskelesi /
Provisorische Arbeitsbühne

Planlar / Pläne:
MEETING POINT

EXISTING BUILDINGS / CONCEPT VISUAL SIMILARITY
LEGEND

- **1ST DEGREE ARCHAEOLOGICAL CONSERVATION SITE**
- **FENCE, BOUNDARY OF THE AREA TO BE MANAGED**
- **EXTENT OF EXISTING EXCAVATION AREAS (H: 1.50M.)**
- **DISTANCES**
- **AREA OF EXCAVATED ARCHAEOLOGY OPEN TO VISITORS**
- **ENTRANCE AREA, SERVICE BUILDING**
- **EXISTING ENTRANCE AREA**
- **SUGGESTED ENTRANCE AREA**
- **TOUR/PATH TO VISIT THE EXCAVATED ARCHAEOLOGY**
- **TOUR/PATH AROUND THE EXCAVATED ARCHAEOLOGY (WOODEN BOARD WALK)**
- **ASPHALT ROAD**
- **IMPROVED ROAD**
- **EXISTING SECURITY BUILDING (MODULE)**
- **EXISTING OLIVE PLANTATIONS**
- **SUGGESTED ENTRANCE TO THE ARCHAEOLOGICAL SITE AND MEETING POINT**
- **EXISTING VISITOR MEETING AREA**
- **VIEW POINT**